Computation of D-brane instanton induced superpotential couplings: Majorana masses from string theory

Loading...
Thumbnail Image
Penn collection
Department of Physics Papers
Degree type
Discipline
Subject
Physical Sciences and Mathematics
Physics
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Richter, Robert
Weigand, Timo
Contributor
Abstract

We perform a detailed conformal field theory analysis of D2-brane instanton effects in four-dimensional type IIA string vacua with intersecting D6-branes. In particular, we explicitly compute instanton induced fermion two-point couplings which play the role of perturbatively forbidden Majorana mass terms for right-handed neutrinos or MSSM μ terms. These results can readily be extended to higherdimensional operators. In concrete realizations of such nonperturbative effects, the Euclidean D2-branehas to wrap a rigid, supersymmetric cycle with strong constraints on the zero-mode structure. Their implications for type IIA compactifications on the T6/ (Z2 X Z2) orientifold with discrete torsion are analyzed. We also construct a local supersymmetric GUT-like model allowing for a class of Euclidean D2-branes whose fermionic zero modes meet all the constraints for generating Majorana masses in the phenomenologically allowed regime. Together with perturbatively realized Dirac masses, these nonperturbative couplings give rise to the seesaw mechanism.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2007-10-18
Journal title
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Suggested Citation: M. Cvetič, R. Richter and T. Weigand. (2007). "Computation of D-brane instanton induced superpotential couplings: Majorana masses from string theory." Physical Review D. 76, 086002. © 2007 The American Physical Society. http://dx.doi.org/10.1103/PhysRevD.76.086002
Recommended citation
Collection