Search results

Now showing 1 - 10 of 68
  • Publication
    Group Size and Social Conflict in Complex Societies
    (2014-02-01) Shen, Sheng-Feng; Akçay, Erol; Rubenstein, Dustin R
    Conflicts of interest over resources or reproduction among individuals in a social group have long been considered to result in automatic and universal costs to group living. However, exploring how social conflict varies with group size has produced mixed empirical results. Here we develop a model that generates alternative predictions for how social conflict should vary with group size depending on the type of benefits gained from being in a social group. We show that a positive relationship between social conflict and group size is favored when groups form primarily for the benefits of sociality but not when groups form mainly for accessing group-defended resources. Thus, increased social conflict in animal societies should not be viewed as an automatic cost of larger social groups. Instead, studying the relationship between social conflict and the types of grouping benefits will be crucial for understanding the evolution of complex societies.
  • Publication
    High Adenylyl Cyclase Activity and In Vivo cAMP Fluctuations in Corals Suggest Central Physiological Role
    (2013-03-05) Barott, Katie; Helman, Y.; Haramaty, L.; Barron, Megan E; Hess, K. C; Buck, J.; Levin, L. R; Tresguerres, Martin
    Corals are an ecologically and evolutionarily significant group, providing the framework for coral reef biodiversity while representing one of the most basal of metazoan phyla. However, little is known about fundamental signaling pathways in corals. Here we investigate the dynamics of cAMP, a conserved signaling molecule that can regulate virtually every physiological process. Bioinformatics revealed corals have both transmembrane and soluble adenylyl cyclases (AC). Endogenous cAMP levels in live corals followed a potential diel cycle, as they were higher during the day compared to the middle of the night. Coral homogenates exhibited some of the highest cAMP production rates ever to be recorded in any organism; this activity was inhibited by calcium ions and stimulated by bicarbonate. In contrast, zooxanthellae or mucus had >1000-fold lower AC activity. These results suggest that cAMP is an important regulator of coral physiology, especially in response to light, acid/base disturbances and inorganic carbon levels.
  • Publication
    Pathways to Social Evolution: Reciprocity, Relatedness, and Synergy
    (2014-08-01) Van Cleve, Jeremy; Akçay, Erol
    Many organisms live in populations structured by space and by class, exhibit plastic responses to their social partners, and are subject to nonadditive ecological and fitness effects. Social evolution theory has long recognized that all of these factors can lead to different selection pressures but has only recently attempted to synthesize how these factors interact. Using models for both discrete and continuous phenotypes, we show that analyzing these factors in a consistent framework reveals that they interact with one another in ways previously overlooked. Specifically, behavioral responses (reciprocity), genetic relatedness, and synergy interact in nontrivial ways that cannot be easily captured by simple summary indices of assortment. We demonstrate the importance of these interactions by showing how they have been neglected in previous synthetic models of social behavior both within and between species. These interactions also affect the level of behavioral responses that can evolve in the long run; proximate biological mechanisms are evolutionarily stable when they generate enough responsiveness relative to the level of responsiveness that exactly balances the ecological costs and benefits. Given the richness of social behavior across taxa, these interactions should be a boon for empirical research as they are likely crucial for describing the complex relationship linking ecology, demography, and social behavior.
  • Publication
    The Perfect Family: Decision Making in Biparental Care
    (2009-10-13) Akçay, Erol; Roughgarden, Joan
    Background Previous theoretical work on parental decisions in biparental care has emphasized the role of the conflict between evolutionary interests of parents in these decisions. A prominent prediction from this work is that parents should compensate for decreases in each other's effort, but only partially so. However, experimental tests that manipulate parents and measure their responses fail to confirm this prediction. At the same time, the process of parental decision making has remained unexplored theoretically. We develop a model to address the discrepancy between experiments and the theoretical prediction, and explore how assuming different decision making processes changes the prediction from the theory. Model Description We assume that parents make decisions in behavioral time. They have a fixed time budget, and allocate it between two parental tasks: provisioning the offspring and defending the nest. The proximate determinant of the allocation decisions are parents' behavioral objectives. We assume both parents aim to maximize the offspring production from the nest. Experimental manipulations change the shape of the nest production function. We consider two different scenarios for how parents make decisions: one where parents communicate with each other and act together (the perfect family), and one where they do not communicate, and act independently (the almost perfect family). Conclusions/Significance The perfect family model is able to generate all the types of responses seen in experimental studies. The kind of response predicted depends on the nest production function, i.e. how parents' allocations affect offspring production, and the type of experimental manipulation. In particular, we find that complementarity of parents' allocations promotes matching responses. In contrast, the relative responses do not depend on the type of manipulation in the almost perfect family model. These results highlight the importance of the interaction between nest production function and how parents make decisions, factors that have largely been overlooked in previous models.
  • Publication
    Immunolocalization of Proteins in Corals: The V-Type H+-ATPase Proton Pump
    (2015-09-05) Barott, Katie; Tresguerres, Martin
    Here we describe the immunolocalization of a membrane-bound proton pump, the V-type H+-ATPase (VHA), in tissues and isolated cells of scleractinian corals. Immunolocalization of coral proteins requires additional steps not required for various model organisms, such as decalcification of the coral skeleton for immunohistochemistry or removal of cells away from the skeleton for immunocytochemistry. The tissue and cell preparation techniques described here can be adapted for localization of other coral proteins, provided the appropriate validation steps have been taken for the primary antibodies and species of coral used. These techniques are important for improving our understanding of coral cell physiology.
  • Publication
    Social Inheritance Can Explain the Structure of Animal Social Networks
    (2015-01-01) Ilany, Amiyaal; Akçay, Erol
    The social network structure of animal populations has major implications to survival, reproductive success, sexual selection, and pathogen transmission. Recent studies showed in various species that the structure of social networks and individuals’ positions in it are influenced by individual traits such as sex, age, and social rank, and can be heritable between generations. But as of yet, no general theory of social network structure exists that can explain the diversity of social networks observed in nature, and serve as a null model for detecting species and population-specific factors. Here we propose such a general model of social network structure. We consider the emergence of network structure as a result of two types of social bond formation: via social inheritance, in which newborns are likely to bond with maternal contacts, and via forming bonds randomly. We compare model output to data from several species, showing that it can generate networks with properties such as those observed in real social systems. Our model demonstrates that some of the observed properties of social networks, such as heritability of network position or assortative associations, can be understood as a consequence of social inheritance. Our results highlight the need to consider the dynamic processes that generate social structure in order to explain patterns of variation in social networks.
  • Publication
    Genome-Wide Mapping of Uncapped and Cleaved Transcripts Reveals a Role for the Nuclear mRNA Cap-Binding Complex in Cotranslational RNA Decay in Arabidopsis
    (2016-10-01) Yu, Xiang; Anderson, Stephen J; Gregory, Brian D; Willmann, Matthew R
    RNA turnover is necessary for controlling proper mRNA levels posttranscriptionally. In general, RNA degradation is via exoribonucleases that degrade RNA either from the 5′ end to the 3′ end, such as XRN4, or in the opposite direction by the multisubunit exosome complex. Here, we use genome-wide mapping of uncapped and cleaved transcripts to reveal the global landscape of cotranslational mRNA decay in the Arabidopsis thaliana transcriptome. We found that this process leaves a clear three nucleotide periodicity in open reading frames. This pattern of cotranslational degradation is especially evident near the ends of open reading frames, where we observe accumulation of cleavage events focused 16 to 17 nucleotides upstream of the stop codon because of ribosomal pausing during translation termination. Following treatment of Arabidopsis plants with the translation inhibitor cycloheximide, cleavage events accumulate 13 to 14 nucleotides upstream of the start codon where initiating ribosomes have been stalled with these sequences in their P site. Further analysis in xrn4 mutant plants indicates that cotranslational RNA decay is XRN4 dependent. Additionally, studies in plants lacking CAP BINDING PROTEIN80/ABA HYPERSENSITIVE1, the largest subunit of the nuclear mRNA cap binding complex, reveal a role for this protein in cotranslational decay. In total, our results demonstrate the global prevalence and features of cotranslational RNA decay in a plant transcriptome.
  • Publication
    High-Throughput Identification of Long-Range Regulatory Elements and Their Target Promoters in the Human Genome
    (2013-05-01) Hwang, Yih-Chii; Zheng, Qi; Gregory, Brian D; Wang, Li-San
    Enhancer elements are essential for tissue-specific gene regulation during mammalian development. Although these regulatory elements are often distant from their target genes, they affect gene expression by recruiting transcription factors to specific promoter regions. Because of this long-range action, the annotation of enhancer element–target promoter pairs remains elusive. Here, we developed a novel analysis methodology that takes advantage of Hi-C data to comprehensively identify these interactions throughout the human genome. To do this, we used a geometric distribution-based model to identify DNA–DNA interaction hotspots that contact gene promoters with high confidence. We observed that these promoter-interacting hotspots significantly overlap with known enhancer-associated histone modifications and DNase I hypersensitive sites. Thus, we defined thousands of candidate enhancer elements by incorporating these features, and found that they have a significant propensity to be bound by p300, an enhancer binding transcription factor. Furthermore, we revealed that their target genes are significantly bound by RNA Polymerase II and demonstrate tissue-specific expression. Finally, we uncovered that these elements are generally found within 1 Mb of their targets, and often regulate multiple genes. In total, our study presents a novel high-throughput workflow for confident, genome-wide discovery of enhancer–target promoter pairs, which will significantly improve our understanding of these regulatory interactions.
  • Publication
    Evolutionary Models of Mutualism
    (2015-01-01) Akçay, Erol
  • Publication
    Global Analysis of RNA Secondary Structure in Two Metazoans
    (2012-01-26) Li, Fan; Zheng, Qi; Ryvkin, Paul; Valladares, Otto; Murray, John I; Dragomir, Isabelle; Desai, Yaanik; Aiyer, Subhadra; Cherry, Sara; Wang, Li-San; Yang, Jamie; Gregory, Brian D; Bambina, Shelley; Sabin, Leah R; Lamitina, Todd; Rai, Arjun
    The secondary structure of RNA is necessary for its maturation, regulation, processing, and function. However, the global influence of RNA folding in eukaryotes is still unclear. Here, we use a high-throughput, sequencing-based, structure-mapping approach to identify the paired (double-stranded RNA [dsRNA]) and unpaired (single-stranded RNA [ssRNA]) components of the Drosophila melanogaster and Caenorhabditis elegans transcriptomes, which allows us to identify conserved features of RNA secondary structure in metazoans. From this analysis, we find that ssRNAs and dsRNAs are significantly correlated with specific epigenetic modifications. Additionally, we find key structural patterns across protein-coding transcripts that indicate that RNA folding demarcates regions of protein translation and likely affects microRNA-mediated regulation of mRNAs in animals. Finally, we identify and characterize 546 mRNAs whose folding pattern is significantly correlated between these metazoans, suggesting that their structure has some function. Overall, our findings provide a global assessment of RNA folding in animals.