Spatial Sampling Strategies with Multiple Scientific Frames of Reference

Loading...
Thumbnail Image
Penn collection
Departmental Papers (ESE)
General Robotics, Automation, Sensing and Perception Laboratory
Kod*lab
Degree type
Discipline
Subject
GRASP
Kodlab
Spatial sampling
frames of reference
representation
scientific decision making
Cognitive Psychology
Electrical and Computer Engineering
Engineering
Geomorphology
Quantitative Psychology
Soil Science
Systems Engineering
Funder
This work was supported in part by NSF INSPIRE Award #1514882.
Grant number
License
Copyright date
Distributor
Contributor
Abstract

We study the spatial sampling strategies employed by field scientists studying aeolian processes, which are geophysical interactions between wind and terrain. As in geophysical field science in general, observations of aeolian processes are made and data gathered by carrying instruments to various locations and then deciding when and where to record a measurement. We focus on this decision-making process. Because sampling is physically laborious and time consuming, scientists often develop sampling plans in advance of deployment, i.e., employ an offline decision-making process. However, because of the unpredictable nature of field conditions, sampling strategies generally have to be updated online. By studying data from a large field deployment, we show that the offline strategies often consist of sampling along linear segments of physical space, called transects. We proceed by studying the sampling pattern on individual transects. For a given transect, we formulate model-based hypotheses that the scientists may be testing and derive sampling strategies that result in optimal hypothesis tests. Different underlying models lead to qualitatively different optimal sampling behavior. There is a clear mismatch between our first optimal sampling strategy and observed behavior, leading us to conjecture about other, more sophisticated hypothesis tests that may be driving expert decision-making behavior. For more information: Kod*lab

Advisor
Date of presentation
2017-06-01
Conference name
Departmental Papers (ESE)
Conference dates
2023-05-17T17:27:20.000
Conference location
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation
@InProceedings{pbr-rldm2017, Title = {Spatial Sampling Strategies with Multiple Scientific Frames of Reference}, Author = {Paul B. Reverdy and Thomas F. Shipley and Daniel E. Koditschek}, Booktitle = {The 3rd Multidisciplinary Conference on Reinforcement Learning and Decision Making (RLDM2017)}, Year = {2017} }
Collection