Departmental Papers (ESE)


Artificial pacemakers are one of the most widely-used implantable devices today, with millions implanted worldwide. The main purpose of an artificial pacemaker is to treat bradycardia, or slow heart beats, by pacing the atrium and ventricles at a faster rate. While the basic functionality of the device is fairly simple, there are many documented cases of death and injury due to device malfunctions. The frequency of malfunctions due to firmware problems will only increase as the pacemaker operations become more complex in an attempt to expand the use of the device. One reason these malfunctions arise is that there is currently no methodology for formal validation and verification of medical device software, as there are in the safety-critical domains of avionics and industrial control automation. We have developed a timed-automata based Virtual Heart Model (VHM) to act as platform for medical device software validation and verification. Through a case study involving multiple arrhythmias, this investigation shows how the VHM can be used with closed-loop operation of a pacemaker to validate the necessity and functionality of the complex mode-switch pacemaker operation. We demonstrate the correct pacemaker operation, to switch from one rhythm management mode to another, in patients with supraventricular tachycardias.

Document Type

Conference Paper

Date of this Version



Suggested Citation
Z.Jiang, A. Connolly, R. Mangharam, "Using the Virtual Heart Model to Validate the Mode-Switch Pacemaker Operation. 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE EMBC'10).

© 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

See more from the mLAB in ScholarlyCommons at Real-Time and Embedded Systems Lab (mLAB)


Heart model, Pacemaker, close-loop, validation, verification



Date Posted: 07 September 2010

This document has been peer reviewed.