Template Based Control of Hexapedal Running

Loading...
Thumbnail Image
Penn collection
Departmental Papers (ESE)
General Robotics, Automation, Sensing and Perception Laboratory
Kod*lab
Degree type
Discipline
Subject
GRASP
Kodlab
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract

In this paper, we introduce a hexapedal locomotion controller that simulation evidence suggests will be capable of driving our RHex robot at speeds exceeding five body lengths per second with reliable stability and rapid maneuverability. We use a low dimensional passively compliant biped as a "template" -- a control target for the alternating tripod gait of the physical machine. We impose upon the physical machine an approrimate inverse dynamics within-stride controller designed to force the true high dimensional system dynamics down onto the lower dimensional subspace corresponding to the template. Numerical simulations suggest the presence of asymptotically stable mnning gaits with large basins of attraction. Moreover, this controller improves substantially the maneuverability and dynamic range of RHex's running behaviors relative to the initial prototype open-loop algorithms.

Advisor
Date of presentation
2003-09-14
Conference name
Departmental Papers (ESE)
Conference dates
2023-05-16T22:30:11.000
Conference location
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Copyright 2003 IEEE. Reprinted from Proceedings of the 2003 IEEE International Conference on Robotics and Automation (ICRA 2003), Volume 1, pages 1374-1379. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it. NOTE: At the time of publication, author Daniel Koditschek was affiliated with the University of Michigan. Currently (August 2005), he is a faculty member in the Department of Electrical and Systems Engineering at the University of Pennsylvania.
Copyright 2003 IEEE. Reprinted from Proceedings of the IEEE International Conference on Robotics and Automation 2003 (ICRA 2003), pages 1374-1379. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it. NOTE: At the time of publication, author Daniel Koditschek was affiliated with the University of Michigan. Currently (June 2005), he is a faculty member in the Department of Electrical and Systems Engineering at the University of Pennsylvania.
Recommended citation
Collection