Improving VoIP Quality Through Path Switching

Loading...
Thumbnail Image
Penn collection
Departmental Papers (ESE)
Degree type
Discipline
Subject
VoIP
Path Switching
Quality
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Tao, Shu
Xu, Kuai
Estepa, Antonio
Fei, Teng
Gao, Lixin
Kurose, Jim
Towsley, Don
Zhang, Zhi-Li
Contributor
Abstract

The current best-effort Internet cannot readily provide the service guarantees that VoIP applications often require. Path switching can potentially address this problem without requiring new network mechanisms, simply by leveraging the robustness to performance variations available from connectivity options such as multi-homing and overlays. In this paper, we evaluate the effectiveness and benefits of path switching in improving the quality of VoIP applications, and demonstrate its feasibility through the design and implementation of a prototype gateway. We argue for an application-driven path switching system that accounts for both network path characteristics and application-specific factors (e.g., codec algorithms, playout buffering schemes). We also develop an application path quality estimator based on the ITU-T E-model for voice quality assessment, and an application-driven path switching algorithm that dynamically adapts the time scales over which path switching decisions are made to maximize voice quality. Through network emulation and experiments over a wide-area multi-homed testbed, we show that, with sufficient path diversity, path switching can yield meaningful improvements in voice quality. Hence by exploiting the inherent path diversity of the Internet, application-driven path switching is a viable option in providing quality-of-service to applications.

Advisor
Date of presentation
2005-03-13
Conference name
Departmental Papers (ESE)
Conference dates
2023-05-16T22:33:03.000
Conference location
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Copyright 2005 IEEE. Reprinted from IEEE INFOCOM 2005, Proceedings of the 23rd Annual Conference. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.
Copyright 2005 IEEE. Reprinted from IEEE INFOCOM 2005, Proceedings of the 23rd Annual Conference. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.
Recommended citation
Collection