The classification of simply connected biquotients of dimension at most 7 and 3 new examples of almost positively curved manifolds

dc.contributor.advisorWolfgang Ziller
dc.contributor.authorDeVito, Jason
dc.date2023-05-24T10:07:29.205
dc.date.accessioned2023-05-24T10:12:15Z
dc.date.available2011-04-27T00:00:00Z
dc.date.issued2011-05-16
dc.date.submitted2011-04-27T07:15:50-07:00
dc.description.abstractWe classify all compact 1-connected manifolds $M^n$ for $2 \leq n leq 7$ which are diffeomorphic to biquotients. Further, given that $M$ is diffeomorphic to a biquotient, we classify the biquotients it is diffeomorphic to. Finally, we show the homogeneous space $Sp(3)\Sp(1) \tines Sp(1)$ and two of its quotients $Sp(3)\Sp(1) \times Sp(1) \times S^1$ and $\delta S^1 \backslash Sp(3)/Sp(1)\times Sp(1)$ admit metrics of almost positive curvature. iv
dc.description.degreeDoctor of Philosophy (PhD)
dc.identifier.urihttps://repository.upenn.edu/handle/20.500.14332/49828
dc.legacy.articleid1472
dc.legacy.fulltexturlhttps://repository.upenn.edu/cgi/viewcontent.cgi?article=1472&context=edissertations&unstamped=1
dc.source.issue311
dc.source.journalPublicly Accessible Penn Dissertations
dc.source.statuspublished
dc.subjectGeometry and Topology
dc.titleThe classification of simply connected biquotients of dimension at most 7 and 3 new examples of almost positively curved manifolds
dc.typeDissertation/Thesis
digcom.contributor.authorisAuthorOfPublication|email:thedevitos@gmail.com|institution:University of Pennsylvania|DeVito, Jason
digcom.date.embargo2011-04-27T00:00:00-07:00
digcom.identifieredissertations/311
digcom.identifier.contextkey1957386
digcom.identifier.submissionpathedissertations/311
digcom.typedissertation
dspace.entity.typePublication
relation.isAuthorOfPublication6da70ba7-b365-4986-96ec-2c6abbd95fad
relation.isAuthorOfPublication.latestForDiscovery6da70ba7-b365-4986-96ec-2c6abbd95fad
upenn.graduate.groupMathematics
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
formattedissertation.pdf
Size:
710.34 KB
Format:
Adobe Portable Document Format