An Olfactory Cilia Pattern in the Mammalian Nose Ensures High Sensitivity to Odors

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Cell & Molecular Biology
Discipline
Subject
airflow
computational fluid dynamics model
odorant absorption
olfactory cilia
patch clamp
type III adenylyl cyclase
Cell Biology
Neuroscience and Neurobiology
Physiology
Funder
Grant number
License
Copyright date
2016-11-29T00:00:00-08:00
Distributor
Related resources
Contributor
Abstract

In many sensory organs, specialized receptors are strategically arranged to enhance detection sensitivity and acuity. It is unclear whether the olfactory system utilizes a similar organizational scheme to facilitate odor detection. Curiously, olfactory sensory neurons (OSNs) in the mouse nose are differentially stimulated depending on the cell location. We therefore asked whether OSNs in different locations evolve unique structural and/or functional features to optimize odor detection and discrimination. Using immunohistochemistry, computational fluid dynamics modeling, and patch clamp recording, we discovered that OSNs situated in highly stimulated regions have much longer cilia and are more sensitive to odorants than those in weakly stimulated regions. Surprisingly, reduction in neuronal excitability or ablation of the olfactory G protein in OSNs does not alter the cilia length pattern, indicating that neither spontaneous nor odor-evoked activity is required for its establishment. Furthermore, the pattern is evident at birth, maintained into adulthood, and restored following pharmacologically induced degeneration of the olfactory epithelium, suggesting that it is intrinsically programmed. Intriguingly, type III adenylyl cyclase (ACIII), a key protein in olfactory signal transduction and ubiquitous marker for primary cilia, exhibits location-dependent gene expression levels. Moreover, genetic ablation or reduction of ACIII levels dramatically alters the cilia pattern. These findings reveal an intrinsically programmed, activity-independent configuration in the nose to ensure high sensitivity to odors and a novel role of ACIII in mediating olfactory cilia length. Together, this work has broad implications for how sensory receptors optimize detection sensitivity in various physiological contexts and offers new insights into the regulation of cilia morphology and function.

Advisor
Minghong Ma
Date of degree
2016-01-01
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation