Toric Elliptic Fibrations Over Hirzebruchs

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Physics & Astronomy
Discipline
Subject
elliptic fibrations
F-theory
high energy
string theory
supergravity
toric geometry
Mathematics
Physics
Funder
Grant number
License
Copyright date
2018-02-23T20:17:00-08:00
Distributor
Related resources
Contributor
Abstract

F-theory offers a compelling, nonperturbative framework in which to construct string vacua in even dimensional space-time. These theories are described by an elliptically fibered Calabi-Yau manifold over a base of complex dimension $d$ for a low energy theory in $10-2d$ dimensional space-time. The structure of the gauge group in the low-energy theory is captured principally in the singularities of the elliptic fibration. In the parlance of type IIB string theory, the gauge group is reflected in 7-branes which wrap on topologically nontrivial cycles of the base manifold. The geometry of the gauge groups and matter representations that arise in F-theory has been worked out by Taylor-Morrison. While there is a finite set of gauge groups and matter content that arise in F-theory constructions of 6D supergravity theories, a given base may yield a wide range of both. Models that have different spectra over a common F-theory base can be configured by tuning the coefficients in the Weierstrass description of the model such that certain codimension-one and -two singularities materialize in the elliptic fibration. As the structure of singularities in the fibration becomes more sophisticated, the accompanying matter representations become more exotic. Taylor-Morrison systematically classified the smooth toric bases that support elliptically fibered Calabi-Yau threefolds. By analyzing the intersection structure of irreducible effective divisors on the base, they found that there are 61,539 distinct toric bases. Many Calabi-Yau manifolds can be realized as hypersurfaces in toric varieties of one higher dimension which, following Batyrev, can be constructed with reflexive polyhedra. Kreuzer-Skarke systematically identified the 473,800,776 reflexive polytopes in 4D. This suggests another approach to understanding elliptically fibered Calabi-Yau threefolds for 6D theories: by analyzing polytopes in 4D, one can understand all toric elliptic fibrations for F-theory from this list. Braun identified the polytopes corresponding to elliptic fibrations over base $C\mathbb{P}^2$. In this thesis, I systematically identify the polytopes that correspond to elliptic fibrations of the first Hirzebruch surfaces $F_1$ as well as $F_{12}$, the final Hirzebruch surface admitted in an F-Theoretic context. I study the hodge structure of all admitted 4D polytopes; as well as the Gauge groups and Kodaira fibers.

Advisor
Ron Y. Donagi
Date of degree
2017-01-01
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation