Fly-by-Logic: A Tool for Unmanned Aircraft System Fleet Planning using Temporal Logic
Penn collection
Degree type
Discipline
Subject
CPS Formal Methods
uas mission planning · signal temporal logic · correct- by-construction planning · multi-rotor uas
Computer Engineering
Electrical and Computer Engineering
Funder
Grant number
License
Copyright date
Distributor
Related resources
Contributor
Abstract
Safe planning for fleets of Unmaned Aircraft Systems (UAS) performing complex missions in urban environments has typically been a challenging problem. In the United States of America, the National Aeronautics and Space Administration (NASA) and the Federal Aviation Administration (FAA) have been studying the regulation of the airspace when multiple such fleets of autonomous UAS share the same airspace, outlined in the Concept of Operations document (ConOps). While the focus is on the infrastructure and management of the airspace, the Unmanned Aircraft System (UAS) Traffic Management (UTM) ConOps also outline a potential airspace reservation based system for operation where operators reserve a volume of the airspace for a given time inter- val to operate in, but it makes clear that the safety (separation from other aircraft, terrain, and other hazards) is a responsibility of the drone fleet operators. In this work, we present a tool that allows an operator to plan out missions for fleets of multi-rotor UAS, performing complex time- bound missions. The tool builds upon a correct-by-construction planning method by translating missions to Signal Temporal Logic (STL). Along with a simple user interface, it also has fast and scalable mission planning abilities. We demonstrate our tool for one such mission.