Overcoming Algorithm Aversion: People will Use Imperfect Algorithms If They Can (Even Slightly) Modify Them

dc.contributor.authorDietvorst, Berkeley J
dc.contributor.authorSimmons, Joseph P
dc.contributor.authorMassey, Cade
dc.date2023-05-17T20:06:04.000
dc.date.accessioned2023-05-22T23:43:42Z
dc.date.available2023-05-22T23:43:42Z
dc.date.issued2016-01-01
dc.date.submitted2018-05-22T11:21:40-07:00
dc.description.abstractAlthough evidence-based algorithms consistently outperform human forecasters, people often fail to use them after learning that they are imperfect, a phenomenon known as algorithm aversion. In this paper, we present three studies investigating how to reduce algorithm aversion. In incentivized forecasting tasks, participants chose between using their own forecasts or those of an algorithm that was built by experts. Participants were considerably more likely to choose to use an imperfect algorithm when they could modify its forecasts, and they performed better as a result. Notably, the preference for modifiable algorithms held even when participants were severely restricted in the modifications they could make (Stuides 1-3). In fact, our results suggest that participants' preference for modifiable algorithms was indicative of a desire for some control over the forecasting outcome, and not for a desire for greater control over the forecasting outcome, as participants' preference for modifiable was relatively insensitive to the magnitude of the modifications they were able to make (Study 2). Additionally, we found that giving participants the freedom to modify an imperfect algorithm made them feel more satisfied with the forecasting process, more likely to believe that the algorithm was superior, and more likely to choose to use an algorithm to make subsequent forecasts (Study 3). This research suggests that one can reduce algorithm aversion by giving people some control—even a slight amount—over an imperfect algorithm's forecast.
dc.identifier.urihttps://repository.upenn.edu/handle/20.500.14332/39569
dc.legacy.articleid1303
dc.legacy.fields10.1287/mnsc.2016.2643
dc.legacy.fulltexturlhttps://repository.upenn.edu/cgi/viewcontent.cgi?article=1303&context=marketing_papers&unstamped=1
dc.rightsOriginally published in Management Science © 2016 INFORMS This is a pre-final version of the article. The final version can be found at http://dx.doi.org/10.1287/mnsc.2016.2643
dc.source.beginpage1155
dc.source.endpage1170
dc.source.issue389
dc.source.issue3
dc.source.journalMarketing Papers
dc.source.journaltitleManagement Science
dc.source.peerreviewedtrue
dc.source.statuspublished
dc.source.volume64
dc.subject.otherDecision making
dc.subject.otherdecision aids
dc.subject.otherheuristics and biases
dc.subject.otherforecasting
dc.subject.otherconfidence
dc.subject.otherApplied Behavior Analysis
dc.subject.otherBehavioral Economics
dc.subject.otherBusiness
dc.subject.otherCognition and Perception
dc.subject.otherCognitive Psychology
dc.subject.otherMarketing
dc.titleOvercoming Algorithm Aversion: People will Use Imperfect Algorithms If They Can (Even Slightly) Modify Them
dc.typeReport
digcom.contributor.authorDietvorst, Berkeley J
digcom.contributor.authorSimmons, Joseph P
digcom.contributor.authorMassey, Cade
digcom.identifiermarketing_papers/389
digcom.identifier.contextkey12173231
digcom.identifier.submissionpathmarketing_papers/389
digcom.typereport
dspace.entity.typePublication
upenn.schoolDepartmentCenterMarketing Papers
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Simmons_Massey_Overcoming_Algorithm_Aversion.pdf
Size:
1.07 MB
Format:
Adobe Portable Document Format
Collection