A mechanism of CALHM1 ion channel gating
Penn collection
Degree type
Discipline
Subject
Funder
Grant number
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
The Calcium Homeostasis Modulator (CALHM) proteins comprise a family of six genes, some of which have been demonstrated to function as ion channels. CALHM1, the founding member, is an extracellular Ca2+- and voltage-gated large-pore ion channel. The mechanisms by which Ca2+ and voltage regulate CALHM1 channel gating are unknown. Cryo-electron microscopic structures of CALHM1 and its paralogs have provided little insights into these features, although they have suggested that the amino-termini, including an amino-terminal helix (NTH) and the first transmembrane helix (TM1) may possess significant flexibility. Here we investigated the role of the amino terminus in gating regulation of human CALHM1 channels expressed in Xenopus oocytes. Deletion of the NTH and the proximal end of TM1 reduced the voltage-dependence of channel gating, whereas extracellular Ca2+ retained ability to close the channel, indicating that the amino-terminus is not the Ca2+-regulated gate. Furthermore, inhibition of channel currents by ruthenium red was independent of the presence of the amino terminus and was mediated by effects on channel gating rather than pore block. Introduction of a cysteine residue into the proximal end of TM1 enabled complete inhibition of the channel by a crosslinking reagent under conditions in which the channel was in a closed state. Our findings indicate that while the NTH plays a role in voltage-dependent gating, it does not act as the gate itself. Instead, our results suggest that the gate in CALHM1 is most likely formed by proximal regions of the first transmembrane domain.