Multi-hypothesis Motion Planning for Visual Object Tracking

Loading...
Thumbnail Image
Penn collection
Departmental Papers (CIS)
Degree type
Discipline
Subject
Computer Sciences
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Gong, Haefong
Sim, Jack
Likhachev, Maxim
Contributor
Abstract

In this paper, we propose a long-term motion model for visual object tracking. In crowded street scenes, persistent occlusions are a frequent challenge for tracking algorithm and a robust, long-term motion model could help in these situations. Motivated by progresses in robot motion planning, we propose to construct a set of ‘plausible’ plans for each person, which are composed of multiple long-term motion prediction hypotheses that do not include redundancies, unnecessary loops or collisions with other objects. Constructing plausible plan is the key step in utilizing motion planning in object tracking, which has not been fully investigate in robot motion planning. We propose a novel method of efficiently constructing disjoint plans in different homotopy classes, based on winding numbers and winding angles of planned paths around all obstacles. As the goals can be specified by winding numbers and winding angles, we can avoid redundant plans in the same homotopy class and multiple whirls or loops around a single obstacle. We test our algorithm on a challenging, real-world dataset, and compare our algorithm with Linear Trajectory Avoidance and a simplified linear planning model. We find that our algorithm outperforms both algorithms in most sequences.

Advisor
Date of presentation
2011-01-01
Conference name
Departmental Papers (CIS)
Conference dates
2023-05-17T07:09:29.000
Conference location
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Gong, H., Sim, J., Likhachev, M., Shi, J.: Multi-hypothesis motion planning for visual object tracking. ;In ICCV(2011)619-626 Digital Object Identifier: http://dx.doi.org/10.1109/ICCV.2011.6126296 © 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Recommended citation
Collection