Target Tracking With Distributed Sensors: The Focus of Attention Problem
Penn collection
General Robotics, Automation, Sensing and Perception Laboratory
Degree type
Discipline
Subject
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
In this paper, we investigate data fusion techniques for target tracking using distributed sensors. Specifically, we are interested in how pairs of bearing or range sensors can be best assigned to targets in order to minimize the expected error in the estimates. We refer to this as the focus of attention (FOA) problem. In its general form, FOA is NP-hard and not well approximable. However, for specific geometries we obtain significant approximation results: a 2-approximation algorithm for stereo cameras on a line, a PTAS for when the cameras are equidistant, and a 1.42 approximation for equally spaced range sensors on a circle. In addition to constrained geometries, we further investigate the problem for general sensor placement. By reposing as a maximization problem -- where the goal is to maximize the number of tracks with bounded error -- we are able to leverage results from maximum set-packing to render the problem approximable. We demonstrate these in simulation for a target tracking task, and for localizing a team of mobile agents in a sensor network. These results provide insights into sensor/target assignment strategies, as well as sensor placement in a distributed network.
Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
Volume number
Issue number
Publisher
Publisher DOI
Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-03-23.