Online Learning With Predictable Sequences

Loading...
Thumbnail Image
Penn collection
Statistics Papers
Degree type
Discipline
Subject
Computer Sciences
Statistics and Probability
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Rakhlin, Alexander
Sridharan, Karthik
Contributor
Abstract

We present methods for online linear optimization that take advantage of benign (as opposed to worst-case) sequences. Specifically if the sequence encountered by the learner is described well by a known “predictable process”, the algorithms presented enjoy tighter bounds as compared to the typical worst case bounds. Additionally, the methods achieve the usual worst-case regret bounds if the sequence is not benign. Our approach can be seen as a way of adding prior knowledge about the sequence within the paradigm of online learning. The setting is shown to encompass partial and side information. Variance and path-length bounds Hazan and Kale (2010); Chiang et al. (2012) can be seen as particular examples of online learning with simple predictable sequences. We further extend our methods to include competing with a set of possible predictable processes (models), that is “learning” the predictable process itself concurrently with using it to obtain better regret guarantees. We show that such model selection is possible under various assumptions on the available feedback.

Advisor
Date of presentation
2013-01-01
Conference name
Statistics Papers
Conference dates
2023-05-17T15:27:13.000
Conference location
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation
Collection