A recurrent model of orientation maps with simple and complex cells

dc.contributor.authorMerolla, Paul
dc.contributor.authorBoahen, Kwabena A
dc.date2023-05-16T21:42:15.000
dc.date.accessioned2023-05-22T12:17:14Z
dc.date.available2023-05-22T12:17:14Z
dc.date.issued2003-12-09
dc.date.submitted2004-11-11T11:33:34-08:00
dc.description.abstractWe describe a neuromorphic chip that utilizes transistor heterogeneity, introduced by the fabrication process, to generate orientation maps similar to those imaged in vivo. Our model consists of a recurrent network of excitatory and inhibitory cells in parallel with a push-pull stage. Similar to a previous model the recurrent network displays hotspots of activity that give rise to visual feature maps. Unlike previous work, however, the map for orientation does not depend on the sign of contrast. Instead, sign-independent cells driven by both ON and OFF channels anchor the map, while push-pull interactions give rise to sign-preserving cells. These two groups of orientation-selective cells are similar to complex and simple cells observed in V1.
dc.description.commentsAdvances in Neural Information Processing Systems 16 (NIPS 2003), pages 995-1002. Publisher URL: >http://books.nips.cc/nips16.html
dc.identifier.urihttps://repository.upenn.edu/handle/20.500.14332/2903
dc.legacy.articleid1035
dc.legacy.fulltexturlhttps://repository.upenn.edu/cgi/viewcontent.cgi?article=1035&context=be_papers&unstamped=1
dc.source.issue26
dc.source.journalDepartmental Papers (BE)
dc.source.peerreviewedtrue
dc.source.statuspublished
dc.titleA recurrent model of orientation maps with simple and complex cells
dc.typePresentation
digcom.contributor.authorMerolla, Paul
digcom.contributor.authorisAuthorOfPublication|email:boahen@seas.upenn.edu|institution:University of Pennsylvania|Boahen, Kwabena A
digcom.identifierbe_papers/26
digcom.identifier.contextkey32456
digcom.identifier.submissionpathbe_papers/26
digcom.typeconference
dspace.entity.typePublication
relation.isAuthorOfPublication93e1cefd-0e80-4a17-92e2-4fc25cb0e18a
relation.isAuthorOfPublication.latestForDiscovery93e1cefd-0e80-4a17-92e2-4fc25cb0e18a
upenn.schoolDepartmentCenterDepartmental Papers (BE)
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
recurrent.pdf
Size:
1004.98 KB
Format:
Adobe Portable Document Format
Collection