Minding Your Ps and Qs: Going from Micro to Macro in Measuring Prices and Quantities

Loading...
Thumbnail Image
Penn collection
Degree type
Discipline
Subject
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Ehrlich, Gabe
Haltiwanger, John C
Jarmin, Ron
Johnson, David
Shapiro, Matthew
Contributor
Abstract

Key macro indicators such as output, productivity and inflation are based on a complex system of collection from different samples and different levels of aggregation across multiple statistical agencies. The Census Bureau collects nominal sales, the Bureau of Labor Statistics collects prices, and the Bureau of Economic Analysis constructs nominal and real GDP using these and other data sources. The price and quantity data are integrated at a high level of aggregation (product and industry classes). A similar mismatch of price and nominal variables pervades the productivity data, which use industry-level producer price indexes as deflators. This paper explores alternative methods for re-engineering key national output and price indices using transactions-level data. Such re-engineering offers the promise of greatly improved macroeconomic data along many dimensions. First, price and quantity would be based on the same observations. Second, the granularity of data could be greatly increased on many dimensions. Third, time series could be constructed at a higher frequency and on a more timely basis. Fourth, the use of transactions-level data opens the door to new methods for tracking product turnover and other sources of product quality change that may be biasing the key national indicators. Implementing such a new architecture for measuring economic activity and price change poses considerable challenges. This paper explores these challenges, along with a re-engineered approach’s implications for the biases in the traditional approaches to measuring output growth, productivity growth, and inflation.

Advisor
Date of presentation
2018-11-01
Conference name
2018 ADRF Network Research Conference Presentations
Conference dates
2023-05-17T21:30:04.000
Conference location
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
DOI: https://doi.org/10.23889/ijpds.v3i5.1055
Recommended citation
Collection