Human Reinforcement Learning: Insights from intracranial recordings and stimulation

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Neuroscience
Discipline
Subject
DBS
dopamine
iEEG
microstimulation
reinforcement learning
substantia nigra
Neuroscience and Neurobiology
Funder
Grant number
License
Copyright date
2015-11-16T20:14:00-08:00
Distributor
Related resources
Contributor
Abstract

Reinforcement learning is the process by which individuals alter their decisions to maximize positive outcomes, and minimize negative outcomes. It is a cognitive process that is widely used in our daily lives and is often disrupted during psychiatric disease. Thus, a major goal of neuroscience is to characterize the neural underpinnings of reinforcement learning. Whereas animal studies have utilized invasive physiological methods to characterize several neural mechanisms that underlie reinforcement learning, human studies have largely relied on non-invasive techniques that have reduced physiological precision. Although ethical limitations preclude the use of invasive physiological methods in healthy human populations, patient populations undergoing certain neurosurgical interventions offer a rare opportunity to directly assay neural activity from the brain during human reinforcement learning. This dissertation presents early findings from this research effort.

Advisor
Michael J. Kahana
Date of degree
2014-01-01
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation