What's So Special About Kruskal's Theorem and the Ordinal To? A Survey of Some Results in Proof Theory

Thumbnail Image
Penn collection
Technical Reports (CIS)
General Robotics, Automation, Sensing and Perception Laboratory
Degree type
Grant number
Copyright date
Related resources

This paper consists primarily of a survey of results of Harvey Friedman about some proof theoretic aspects of various forms of Krusal's tree theorem, and in particular the connection with the ordinal Ƭo. We also include a fairly extensive treatment of normal functions on the countable ordinals, and we give a glimpse of Veblen Hierarchies, some subsystems of second-order logic, slow-growing and fast-growing hierarchies including Girard's result, and Goodstein sequences. The central theme of this paper is a powerful theorem due to Kruskal, the "tree theorem", as well as a "finite miniaturization" of Kruskal's theorem due to Harvey Friedman. These versions of Kruskal's theorem are remarkable from a proof-theoretic point of view because they are not provable in relatively strong logical systems. They are examples of so-called "natural independence phenomena", which are considered by more logicians as more natural than the mathematical incompleteness results first discovered by Gödel. Kruskal's tree theorem also plays a fundamental role in computer science, because it is one of the main tools for showing that certain orderings on trees are well founded. These orderings play a crucial role in proving the termination of systems of rewrite rules and the correctness of Knuth-Bandix completion procedures. There is also a close connection between a certain infinite countable ordinal called Ƭoand Kruskal's theorem. Previous definitions of the function involved in this connection are known to be incorrect, in that, the function is not monotonic. We offer a repaired definition of this function, and explore briefly the consequences of its existence.

Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
Volume number
Issue number
Publisher DOI
Journal Issue
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-93-82.
Recommended citation