Development Of Transition Metal Cluster Complexes With Macrocyclic Redox-Active Ligands Of Increasing Pocket Size

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Chemistry
Discipline
Subject
Inorganic Chemistry
Funder
Grant number
License
Copyright date
2021-08-31T20:21:00-07:00
Distributor
Related resources
Author
Thierer, Laura M
Contributor
Abstract

Dinuclear molecular complexes are increasingly sought in order to exploit metal-metal cooperativity to obtain new catalytic activity in a myriad of applications, including small molecule activation, organic transformations and polymerization methods. These complexes are also desirable for their potential utility in elucidating mechanistic understanding of biological systems and heterogeneous catalysis. Achieving new reactivity necessitates the synthesis of new ligands and new dinuclear molecular complexes. A series of 2,6-diiminopyridine-derived macrocyclic ligands with ring sizes of 18, 20 and 22 members have been synthesized along with the corresponding homobimetallic 3d metal complexes of Mn, Fe, Co, Ni and Cu. The solubility of these ligands and metallic complexes in aprotic organic solvents not only enables systematic characterization of the structural and physical properties with changes to both metals and macrocyclic ring sizes using techniques such as NMR spectroscopy, mass spectrometry, solution-phase UV-Vis spectroscopy, cyclic voltammetry and single-crystal X-ray crystallography in addition to solid state measurements using IR spectroscopy and SQUID magnetometry. The electronic understanding of both the ligand and metal complexes was further developed through computational studies.

Advisor
Neil C. Tomson
Date of degree
2021-01-01
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation