Scalable Link-Based Relay Selection for Anonymous Routing
Penn collection
Degree type
Discipline
Subject
Funder
Grant number
License
Copyright date
Distributor
Related resources
Contributor
Abstract
The performance of an anonymous path can be described using many network metrics – e.g., bandwidth, latency, jitter, loss, etc. However, existing relay selection algorithms have focused exclusively on producing paths with high bandwidth. In contrast to traditional node-based path techniques in which relay selection is biased by relays’ node-characteristics (i.e., bandwidth), this paper presents the case for link-based path generation in which relay selection is weighted in favor of the highest performing links. Link-based relay selection supports more flexible routing, enabling anonymous paths with low latency, jitter, and loss, in addition to high bandwidth. Link-based approaches are also more secure than node-based techniques, eliminating “hotspots” in the network that attract a disproportionate amount of traffic. For example, misbehaving relays cannot advertise themselves as “low-latency” nodes to attract traffic, since latency has meaning only when measured between two endpoints. We argue that link-based path selection is practical for certain anonymity networks, and describe mechanisms for efficiently storing and disseminating link information.