Untangling Cycles for Contour Grouping

Loading...
Thumbnail Image
Penn collection
Departmental Papers (CIS)
Degree type
Discipline
Subject
Computer Sciences
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Zhu, Qihui
Song, Gang
Contributor
Abstract

We introduce a novel topological formulation for contour grouping. Our grouping criterion, called untangling cycles, exploits the inherent topological 1D structure of salient contours to extract them from the otherwise 2D image clutter. To define a measure for topological classification robust to clutter and broken edges, we use a graph formulation instead of the standard computational topology. The key insight is that a pronounced 1D contour should have a clear ordering of edgels, to which all graph edges adhere, and no long range entanglements persist. Finding the contour grouping by optimizing these topological criteria is challenging. We introduce a novel concept of circular embedding to encode this combinatorial task. Our solution leads to computing the dominant complex eigenvectors/ eigenvalues of the random walk matrix of the contour grouping graph. We demonstrate major improvements over state-of-the-art approaches on challenging real images.

Advisor
Date of presentation
2007-01-01
Conference name
Departmental Papers (CIS)
Conference dates
2023-05-17T07:09:16.000
Conference location
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Wang, L., Shi, J., & Song, G. IEEE Conference on Computer Vision. ©2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. DOI: http://dx.doi.org/10.1109/ICCV.2007.4408929
Recommended citation
Collection