Bayesian L1-Norm Sparse Learning
Files
Penn collection
General Robotics, Automation, Sensing and Perception Laboratory
Degree type
Discipline
Subject
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
We propose a Bayesian framework for learning the optimal regularization parameter in the L1-norm penalized least-mean-square (LMS) problem, also known as LASSO [1] or basis pursuit [2]. The setting of the regularization parameter is critical for deriving a correct solution. In most existing methods, the scalar regularization parameter is often determined in a heuristic manner; in contrast, our approach infers the optimal regularization setting under a Bayesian framework. Furthermore, Bayesian inference enables an independent regularization scheme where each coefficient (or weight) is associated with an independent regularization parameter. Simulations illustrate the improvement using our method in discovering sparse structure from noisy data.