Scattering and Lens Rigidity

dc.contributor.advisorChristopher B. Croke
dc.contributor.authorWen, Haomin
dc.date2023-05-17T12:56:50.000
dc.date.accessioned2023-05-22T16:35:54Z
dc.date.available2001-01-01T00:00:00Z
dc.date.copyright2015-11-16T00:00:00-08:00
dc.date.issued2014-01-01
dc.date.submitted2015-11-16T13:06:36-08:00
dc.description.abstractScattering rigidity of a Riemannian manifold allows one to tell the metric of a manifold with boundary by looking at the directions of geodesics at the boundary. Lens rigidity allows one to tell the metric of a manifold with boundary from the same information plus the length of geodesics. There are a variety of results about lens rigidity but very little is known for scattering rigidity. We will discuss the subtle difference between these two types of rigidities and prove that they are equivalent for two-dimensional simple manifolds with boundaries. In particular, this implies that two-dimensional simple manifolds (such as the at disk) are scattering rigid since they are lens/boundary rigid (Pestov--Uhlmann, 2005).
dc.description.degreeDoctor of Philosophy (PhD)
dc.format.extent53 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://repository.upenn.edu/handle/20.500.14332/28315
dc.languageen
dc.legacy.articleid3310
dc.legacy.fulltexturlhttps://repository.upenn.edu/cgi/viewcontent.cgi?article=3310&context=edissertations&unstamped=1
dc.provenanceReceived from ProQuest
dc.rightsHaomin Wen
dc.source.issue1498
dc.source.journalPublicly Accessible Penn Dissertations
dc.source.statuspublished
dc.subject.otherboundary rigidity
dc.subject.otherinverse problem
dc.subject.otherlens rigidity
dc.subject.otherRiemannian geometry
dc.subject.otherscattering rigidity
dc.subject.otherMathematics
dc.titleScattering and Lens Rigidity
dc.typeDissertation/Thesis
digcom.date.embargo2001-01-01T00:00:00-08:00
digcom.identifieredissertations/1498
digcom.identifier.contextkey7851305
digcom.identifier.submissionpathedissertations/1498
digcom.typedissertation
dspace.entity.typePublication
relation.isAuthorOfPublication0faaa988-695c-4a43-a26a-1f4a07aa5991
relation.isAuthorOfPublication.latestForDiscovery0faaa988-695c-4a43-a26a-1f4a07aa5991
upenn.graduate.groupMathematics
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wen_upenngdas_0175C_11132.pdf
Size:
364.29 KB
Format:
Adobe Portable Document Format