Precision and Recall for Time Series
dc.contributor.author | Tatbul, Nesime | |
dc.contributor.author | Lee, Tae J | |
dc.contributor.author | Zdonik, Stan | |
dc.contributor.author | Alam, Mejbah | |
dc.contributor.author | Gottschlich, Justin E | |
dc.date | 2023-05-18T00:14:30.000 | |
dc.date.accessioned | 2023-05-22T13:06:49Z | |
dc.date.available | 2023-05-22T13:06:49Z | |
dc.date.issued | 2018-01-01 | |
dc.date.submitted | 2020-12-18T13:43:02-08:00 | |
dc.description.abstract | Classical anomaly detection is principally concerned with point-based anomalies, those anomalies that occur at a single point in time. Yet, many real-world anomalies are range-based, meaning they occur over a period of time. Motivated by this observation, we present a new mathematical model to evaluate the accuracy of time series classification algorithms. Our model expands the well-known Precision and Recall metrics to measure ranges, while simultaneously enabling customization support for domain-specific preferences. | |
dc.identifier.uri | https://repository.upenn.edu/handle/20.500.14332/8495 | |
dc.legacy.articleid | 1007 | |
dc.legacy.fulltexturl | https://repository.upenn.edu/cgi/viewcontent.cgi?article=1007&context=cps_machine_programming&unstamped=1 | |
dc.source.issue | 9 | |
dc.source.journal | Machine Programming | |
dc.source.status | published | |
dc.title | Precision and Recall for Time Series | |
dc.type | Presentation | |
digcom.contributor.author | Tatbul, Nesime | |
digcom.contributor.author | Lee, Tae J | |
digcom.contributor.author | Zdonik, Stan | |
digcom.contributor.author | Alam, Mejbah | |
digcom.contributor.author | isAuthorOfPublication|email:gojustin@cis.upenn.edu|institution:Intel|Gottschlich, Justin E | |
digcom.identifier | cps_machine_programming/9 | |
digcom.identifier.contextkey | 20689124 | |
digcom.identifier.submissionpath | cps_machine_programming/9 | |
digcom.type | conference | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5cbcf403-a558-4c1c-aa8a-d700e3d50679 | |
relation.isAuthorOfPublication | 5cbcf403-a558-4c1c-aa8a-d700e3d50679 | |
relation.isAuthorOfPublication.latestForDiscovery | 5cbcf403-a558-4c1c-aa8a-d700e3d50679 | |
upenn.schoolDepartmentCenter | Machine Programming |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- NeurIPS_2018_precision_and_recall_for_time_series_Paper.pdf
- Size:
- 975.93 KB
- Format:
- Adobe Portable Document Format