ModelGuard: Runtime Validation of Lipschitz-continuous Models
Penn collection
Degree type
Discipline
Subject
model invalidation
neural network
computational tool
monitoring
Computer Engineering
Computer Sciences
Funder
Grant number
License
Copyright date
Distributor
Related resources
Contributor
Abstract
This paper presents ModelGuard, a sampling-based approach to runtime model validation for Lipschitz-continuous models. Although techniques exist for the validation of many classes of models, the majority of these methods cannot be applied to the whole of Lipschitz-continuous models, which includes neural network models. Additionally, existing techniques generally consider only white-box models. By taking a sampling-based approach, we can address black-box models, represented only by an input-output relationship and a Lipschitz constant. We show that by randomly sampling from a parameter space and evaluating the model, it is possible to guarantee the correctness of traces labeled consistent and provide a confidence on the correctness of traces labeled inconsistent. We evaluate the applicability and scalability of ModelGuard in three case studies, including a physical platform.