Multi-start Method with Prior Learning for Image Registration

Loading...
Thumbnail Image
Penn collection
Departmental Papers (CIS)
Degree type
Discipline
Subject
Funder
Grant number
License
Copyright date
Distributor
Related resources
Contributor
Abstract

We propose an efficient image registration strategy that is based on learned prior distributions of transformation parameters. These priors are used to constrain a finite- time multi-start optimization method. Motivation for this approach comes from the fact that standard affine brain image registration methods, especially those based on gradient descent optimization alone, are affected by the initial search position. While global optimization methods can resolve this problem, they are are often very time consuming. Our goal is to build an explicit prior model of the gap between a typical registration solution and the solution gained by a global optimization method. We use this learned prior model to restrict randomized search in the relevant parameter space surrounding the initial solution. Global optimization in this restricted parameter space provides, in finite time, results that are superior to both gradient descent and the general multi-start strategy. The performance of our method is illustrated on a data set of 67 elderly and neurodegenerative brains. Our novel learning strategy and the associated registration method are shown to outperform other approaches. Theoretical, synthetic and real-world examples illustrate this improvement.

Advisor
Date of presentation
2007-10-10
Conference name
Departmental Papers (CIS)
Conference dates
2023-05-17T02:27:27.000
Conference location
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Copyright 2007 IEEE. Reprinted from Proceedings of the 11th IEEE International Conference on Computer Vision, ICCV 2007, October 2007, 8 pages. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.
Recommended citation
Collection