Alternating-Time Temporal Logic

Thumbnail Image
Penn collection
Technical Reports (CIS)
Degree type
CPS Formal Methods
CPS Theory
Grant number
Copyright date
Related resources
Henzinger, Thomas A
Kupferman, Orna

Temporal logic comes in two varieties: linear-time temporal logic assumes implicit universal quantification over all paths that are generated by system moves; branching-time temporal logic allows explicit existential and universal quantification over all paths. We introduce a third, more general variety of temporal logic: alternating-time temporal logic offers selective quantification over those paths that are possible outcomes of games, such as the game in which the system and the environment alternate moves. While linear-time and branching-time logics are natural specification languages for closed systems, alternative-time logics are natural specification languages for open systems. For example, by preceding the temporal operator "eventually" with a selective path quantifier, we can specify that in the game between the system and the environment, the system has a strategy to reach a certain state. Also, the problems of receptiveness, realizability, and controllability can be formulated as model-checking problems for alternating-time formulas. Depending on whether we admit arbitrary nesting of selective path quantifiers and temporal operators, we obtain the two alternating-time temporal logics ATL and ATL*. We interpret the formulas of ATL and ATL* over alternating transition systems. While in ordinary transitory systems, each transition corresponds to a possible step of the system, in alternating transition systems, each transition corresponds to a possible move in the game between the system and the environment. Fair alternating transition systems can capture both synchronous and asynchronous compositions f open systems. For synchronous systems, the expressive power of ATL beyond CTL comes at no cost: the model-checking complexity of synchronous ATL is linear in the size of the system and the length of the formula. The symbolic model-checking algorithm for CTL extends with few modifications to synchronous ATL, and with some work, also to asynchronous to ATL, whose model-checking complexity is quadratic. This makes ATL an obvious candidate for the automatic verification of open systems. In the case of ATL*, the model-checking problem is closely related to the synthesis problem for linear-time formulas, and requires doubly exponential time for both synchronous and asynchronous systems.

Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
Volume number
Issue number
Publisher DOI
Journal Issue
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-98-09. An abbreviated version of this paper appeared in the Proceedings of the 38th IEEE Symposium on Foundations of Computer Science (FOCS ’97), pp. 100-109, October 1997. This work was supported in part by the ONR YIP award N00014-95-1-0520, by the NSF CAREER award CCR-9501708, by the NSF grant CCR-9504469, by the AFOSR contract F49620-93-1-0056, by the ARO MURI grant DAAH-04-96-1-0341, by the ARPA grant NAG2-892, and by the SRC contract 95-DC-324.036.
Recommended citation