Notes on Convex Sets, Polytopes, Polyhedra, Combinatorial Topology, Voronoi Diagrams and Delaunay Triangulations

Thumbnail Image
Penn collection
Technical Reports (CIS)
General Robotics, Automation, Sensing and Perception Laboratory
Degree type
Convex sets
combinatorial topology
Voronoi diagrams
Delaunay triangulations.
Computer Engineering
Computer Sciences
Grant number
Copyright date
Related resources

Some basic mathematical tools such as convex sets, polytopes and combinatorial topology are used quite heavily in applied fields such as geometric modeling, meshing, computer vision, medical imaging and robotics. This report may be viewed as a tutorial and a set of notes on convex sets, polytopes, polyhedra, combinatorial topology, Voronoi Diagrams and Delaunay Triangulations. It is intended for a broad audience of mathematically inclined readers. One of my (selfish!) motivations in writing these notes was to understand the concept of shelling and how it is used to prove the famous Euler-Poincare formula(Poincare, 1899) and the more recent Upper Bound Theorem (McMullen, 1970) for polytopes. Another of my motivations was to give a "correct" account of Delaunay triangulations and Voronoi diagrams in terms of (direct and inverse) stereographic projections onto a sphere and prove rigorously that the projective map that sends the (projective) sphere to the (projective) paraboloid works correctly, that is, maps the Delaunay triangulation and Voronoi diagram w.r.t. the lifting onto the sphere to the Delaunay diagram and Voronoi diagrams w.r.t. the traditional lifting onto the paraboloid. Here, the problem is that this map is only well defined (total) in projective space and we are forced to define the notion of convex polyhedron in projective space. It turns out that in order to achieve (even partially) the above goals, I found that it was necessary to include quite a bit of background material on convex sets, polytopes, polyhedra and projective spaces. I have included a rather thorough treatment of the equivalence of V-polytopes and H-polytopes and also of the equivalence of V-polyhedra and H-polyhedra, which is a bit harder. In particular, the Fourier-Motzkin elimination method (a version of Gaussian elimination for inequalities) is discussed in some detail. I also had to include some material on projective spaces, projective maps and polar duality w.r.t. a nondegenerate quadric in order to define a suitable notion of \projective polyhedron" based on cones. To the best of our knowledge, this notion of projective polyhedron is new. We also believe that some of our proofs establishing the equivalence of V-polyhedra and H-polyhedra are new.

Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
Volume number
Issue number
Publisher DOI
Journal Issue
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-07-19.
Recommended citation