Hardware Implementation of a Visual-Motion Pixel Using Oriented Spatiotemporal Neural Filters
Penn collection
Degree type
Discipline
Subject
visual motion detection
VLSI neural filters
Adelson and Bergen
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
A pixel for measuring two-dimensional (2-D) visual motion with two one-dimensional (1-D) detectors has been implemented in very large scale integration. Based on the spatiotemporal feature extraction model of Adelson and Bergen, the pixel is realized using a general-purpose analog neural computer and a silicon retina. Because the neural computer only offers sum-and-threshold neurons, the Adelson and Bergen's model is modified. The quadratic nonlinearity is replaced with a full-wave rectification, while the contrast normalization is replaced with edge detection and thresholding. Motion is extracted in two dimensions by using two 1-D detectors with spatial smoothing orthogonal to the direction of motion. Analysis shows that our pixel, although it has some limitations, has much lower hardware complexity compared to the full 2-D model. It also produces more accurate results and has a reduced aperture problem compared to the two 1-D model with no smoothing. Real-time velocity is represented as a distribution of activity of the 18 X and 18 Y velocity-tuned neural filters