DYNAMIC BEHAVIOR AND LINEAGE PLASTICITY OF THE PULMONARY VENOUS ENDOTHELIUM

Loading...
Thumbnail Image
Degree type
PhD
Graduate group
Cell and Molecular Biology
Discipline
Biology
Subject
Endothelial Cell
Lung
Regeneration
Stem Cell
Vein
Funder
Grant number
License
Copyright date
01/01/2025
Distributor
Related resources
Author
Wong, Joanna
Contributor
Abstract

Repair of the pulmonary vascular bed and the origin of new vasculature remains underexplored despite the critical necessity to meet oxygen demands after injury. Given their critical role in angiogenesis in other settings, we investigated the role of venous endothelial cells in endothelial regeneration after adult lung injury. Using single cell transcriptomics, we identified the norepinephrine transporter Slc6a2 as a marker of pulmonary venous endothelial cells and targeted that locus to generate a venous-specific, inducible Cre mouse line. Contributions of the venous endothelial cells to angiogenesis were examined during postnatal development, adult viral injury, and adult hyperoxia injury. Remarkably, we observed that venous endothelial cells proliferate into the adjacent capillary bed upon influenza injury and hyperoxia injury, but not during normal postnatal development. Imaging analysis demonstrated that venous endothelial cells exhibit the ability to proliferate and differentiate into general capillary and CAR4 expressing aerocyte capillary endothelial cells after infection, thus contributing to repair of the capillary plexus vital for gas exchange. Single cell transcriptomic analysis of Slc6a2-traced cells confirmed these observations, with progeny exhibiting significant loss of venous identity and gain of capillary marker expression upon injury resolution. Our studies thus establish that venous endothelial cells exhibit demonstrable progenitor capacity upon respiratory viral injury and sterile injury, contributing to repair of the alveolar capillary bed responsible for pulmonary function.

Advisor
Vaughan, Andrew, E.
Date of degree
2025
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation