Spatiotemporal Dynamics of Neural Activity During Human Episodic Memory Encoding and Retrieval
Degree type
Graduate group
Discipline
Subject
Episodic memory
gamma
theta
Neuroscience and Neurobiology
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
Throughout literary history, the ability to travel in time has been a source of wonder and amusement. Why this fascination with moving through time? One reason may be that people are especially attuned to the concept of time travel because we each possess our own personal mental time machine: episodic memory. Through episodic memory, we transport ourselves back in time to re-live experiences from our past. This allows us to reflect on our own self-knowledge, effectively placing ourselves in context of our lives. This dissertation investigates how our brains accomplish this highly sophisticated cognitive operation. Using a laboratory model of episodic memory (free recall) and a particularly powerful neuroimaging tool (intracranial EEG), I document the changes that occur in the brain as episodic memories are first formed and then later retrieved. I find that the episodic memory system is best conceptualized as stage-wise process consisting of distinct brain regions that activate at highly conserved times relative to memory formation/retrieval. These discrete activations are used to construct a novel neurological model of episodic memory, the Neurological Stages of Episodic Retrieval and Formation (N-SERF) model. Future work should be aimed at verifying the hypotheses put forward by the N-SERF model, we well as relating the N-SERF model to prominent computational models of episodic memory.