A Semiparametric Multivariate Partially Linear Model: A Difference Approach

Loading...
Thumbnail Image
Penn collection
Statistics Papers
Degree type
Discipline
Subject
multivariate semiparametric model
difference-based method
asymptotic efficiency
partial linear model
random field
Business
Mathematics
Statistics and Probability
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Brown, Lawrence D
Levine, Michael
Wang, Lie
Contributor
Abstract

A multivariate semiparametric partial linear model for both fixed and random design cases is considered. In either case, the model is analyzed using a difference sequence approach. The linear component is estimated based on the differences of observations and the functional component is estimated using a multivariate Nadaraya–Watson kernel smoother of the residuals of the linear fit. We show that both components can be asymptotically estimated as well as if the other component were known. The estimator of the linear component is shown to be asymptotically normal and efficient in the fixed design case if the length of the difference sequence used goes to infinity at a certain rate. The functional component estimator is shown to be rate optimal if the Lipschitz smoothness index exceeds half the dimensionality of the functional component argument. We also develop a test for linear combinations of regression coefficients whose asymptotic power does not depend on the functional component. All of the proposed procedures are easy to implement. Finally, numerical performance of all the procedures is studied using simulated data.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2016-11-01
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation
Collection