6- and 5-Halodecaboranes: Selective Syntheses From ClOSO-B10H10(2-) and Use as Polyborane Building Blocks

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Discipline
Subject
Substituted Decaboranes
Halogenated Decaboranes
Polyboranes
Hydrogen Storage
Boranyl Ethers
Variable Temperature NMR
Chemistry
Inorganic Chemistry
Funder
Grant number
License
Copyright date
Distributor
Related resources
Contributor
Abstract

Decaborane halogenated in the 6-position has been synthesized in high yields via the super-acid induced cage-opening reactions of closo-B10H10(2-) salts. These 6-halogenated compounds were then isomerized to their 5-substituted isomers through base catalysis. The isomerization was driven by the energy differences between the anionic-forms of each respective isomer. These reactions provided 5-halodeboranes in high yields. The bridging-hydrogens of the halodecaboranyl anions were fluxional at a range of temperatures. Variable-temperature NMR studies supported computationally proposed fluxional mechanisms. Both 5- and 6-halodecaboranes were reacted with alcohols yielding boranyl ethers. The mechanisms of substitution, where reactions with 6- and 5-halodecaboranes yielded 5- and 6-boranyl ethers, respectively, were explained computationally and confirmed through isotopic-labeling studies. The regeneration of the polymeric products of ammonia-borane dehydrogenation was carried out through a process that included digestion of the polymer, complexation of the digestate with a base, reduction of B-X bonds to B-H bonds, and finally displacement of the base with ammonia. While digestion schemes proved unable to digest all forms of the dehydrogenated materials, portions of the polymer digested to boron-trihalides were quantitatively regenerated to ammonia borane, with complete separation and collection of by-products.

Advisor
Larry G. Sneddon
Date of degree
2010-12-22
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation