Distributed-Code Generation from Hybrid Systems Models for Time-delayed Multirate Systems

Thumbnail Image
Penn collection
Departmental Papers (CIS)
Degree type
Hybrid Systems
Distributed Systems
Grant number
Copyright date
Related resources

Hybrid systems are an appropriate formalism to model embedded systems as they capture the theme of continuous dynamics with discrete control. A simple extension, a network of communicating hybrid automata, allows for modeling distributed embedded systems. Although it is possible to generate code from such models, it is difficult to provide formal guarantees in the code with respect to the model. One of the reasons for this is that, the model is set in continuous time and concurrent execution with instantaneous communication, whereas the generated code is set in discrete time with delayed communication. This can introduce semantic differences between the model and the code such as missed transitions, faulty transitions, and altered continuous behavior. The goal of faithful code generation is to minimize these differences. In this paper, we propose a relaxed criteria of relative faithful implementation. Based on this criteria, we propose dynamically adjusting the guard at runtime using estimates of errors for preventing faulty transitions. We also identify a sufficient condition to ensure no missed transitions in the code.

Date of presentation
Conference name
Departmental Papers (CIS)
Conference dates
Conference location
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher DOI
Journal Issue
Postprint version. Copyright ACM, 2005. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 5th ACM International Conference on Embedded Software (EMSOFT 2005), pages 210-213. Publisher URL: http://doi.acm.org/10.1145/1086228.1086267
Recommended citation