Runtime verification of parametric properties using SMEDL
Penn collection
Degree type
Discipline
Subject
runtime verification
parametric property
trace slicing
SMEDL
Computer Engineering
Computer Sciences
Funder
Grant number
License
Copyright date
Distributor
Related resources
Contributor
Abstract
Parametric properties are typical properties to be checked in runtime verification (RV). As a common technique for parametric monitoring, trace slicing divides an execution trace into a set of sub traces which are checked against non-parametric base properties. An efficient trace slicing algorithm is implemented in MOP. Another RV technique, QEA further allows for nested use of universal and existential quantification over parameters. In this paper, we present a methodology for parametric monitoring using the RV framework SMEDL. Trace slicing algorithm in MOP can be expressed by execution of a set of SMEDL monitors. Moreover, the semantics of nested quantifiers is encoded by a hierarchy of monitors for aggregating verdicts of sub traces. Through case studies, we demonstrate that SMEDL provides a natural way to monitor parametric properties with more potentials for flexible deployment and optimizations.