Fermionic Diagonal Coinvariants

dc.contributor.advisorJim Haglund
dc.contributor.advisorJulia Hartmann
dc.contributor.authorKim, Jongwon
dc.date2023-05-18T03:48:06.000
dc.date.accessioned2023-05-22T18:40:47Z
dc.date.available2001-01-01T00:00:00Z
dc.date.copyright2022-10-05T20:22:00-07:00
dc.date.issued2022-01-01
dc.date.submitted2022-10-05T08:54:03-07:00
dc.description.abstractLet $W$ be a complex reflection group of rank $n$ acting on its reflection representation $V \cong \mb{C}^n$. The doubly graded action of $W$ on the exterior algebra $\wedge (V \oplus V^*)$ induces an action on the quotient by the ideal generate by $W$-invariants with vanishing constant term $\FDR_W = \wedge (V \oplus V^*) / \langle \wedge (V \oplus V^*)^W_{+} \rangle$. We describe the bi-graded $W$-module structure of $\FDR_W$ and introduce a variant of Motzkin paths that descends to the standard monomial basis of $\FDR_W$ with respect to certain term order. The top degree of $\FDR_W$ exhibits the Narayana refinement of Catalan numbers. When $W = S_n$, the symmetric group, $\FDR_{S_n} \cong R_{n,0,2}$, where $R_{n,0,2}$ is the special case of the Boson-Fermionic diagonal coinvariants with two sets of Fermionic variables. In this case, the $(i,j)$-th degree component is a difference of Kronecker product of two hook Schur functions. In addition we consider a module $M_{n,m}$ spanned by $m$-ary strings of length $n$. When $m = 2$, as a vector space, $M_{n,2} \cong \mb{C}[X_n] / \langle x_1^2, \ldots, x_n^2 \rangle$. The trivial component of $\dr_n \otimes M_{n,2}$ is a weighted sum of $q,t$-Narayana numbers which is a different $q,t$-Catalan number than the alternant of $\dr_n$. At $t = 1$, the trivial component equals the inversion generating function for $321$-avoiding permutations.
dc.description.degreeDoctor of Philosophy (PhD)
dc.format.extent83 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://repository.upenn.edu/handle/20.500.14332/32254
dc.languageen
dc.legacy.articleid7365
dc.legacy.fulltexturlhttps://repository.upenn.edu/cgi/viewcontent.cgi?article=7365&context=edissertations&unstamped=1
dc.provenanceReceived from ProQuest
dc.rightsJongwon Kim
dc.source.issue5579
dc.source.journalPublicly Accessible Penn Dissertations
dc.source.statuspublished
dc.subject.otherMathematics
dc.titleFermionic Diagonal Coinvariants
dc.typeDissertation/Thesis
digcom.date.embargo2001-01-01T00:00:00-08:00
digcom.identifieredissertations/5579
digcom.identifier.contextkey31624826
digcom.identifier.submissionpathedissertations/5579
digcom.typedissertation
dspace.entity.typePublication
upenn.graduate.groupMathematics
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kim_upenngdas_0175C_15165.pdf
Size:
378.67 KB
Format:
Adobe Portable Document Format