A Compositional Framework for Avionics (ARINC-653) Systems
Penn collection
Degree type
Discipline
Subject
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
Cyber-physical systems (CPSs) are becoming all-pervasive, and due to increasing complexity they are designed using component-based approaches. Temporal constraints of such complex CPSs can then be modeled using hierarchical scheduling frameworks. In this paper, we consider one such avionics CPS described by ARINC specification 653-2. The real-time workload in this system comprises of partitions, where each partition consists of one or more processes. Processes incur blocking and preemption overheads, and can communicate with other processes in the system. In this work, we develop techniques for automated scheduling of such partitions. At present, system designers manually schedule partitions based on interactions they have with application vendors. This approach is not only time consuming, but can also result in under utilization of resources. Hence, in this work we propose compositional analysis based scheduling techniques for partitions.