Percolation On Galton-Watson Trees

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Mathematics
Discipline
Subject
Mathematics
Funder
Grant number
License
Copyright date
2019-08-27T20:19:00-07:00
Distributor
Related resources
Contributor
Abstract

We consider both Bernoulli and invasion percolation on Galton-Watson trees. In the former case, we show that the quenched survival function is smooth on the supercritical window and smooth from the right at criticality. We also study critical percolation conditioned to reach depth $n$, and construct the incipient infinite cluster by taking $n \to \infty$; quenched limit theorems are proven for the asymptotic size of the layers of the incipient infinite cluster. In the case of invasion percolation, we show that the law of the unique ray in the invasion cluster is absolutely continuous with respect to the limit uniform measure. All results are under assumptions for the offspring distribution of the underlying Galton-Watson tree.

Advisor
Robin Pemantle
Date of degree
2019-01-01
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation