DESIGN OF A MULTI-DIRECTIONAL VARIABLE STIFFNESS LEG FOR DYNAMIC RUNNING

Loading...
Thumbnail Image
Penn collection
Departmental Papers (ESE)
General Robotics, Automation, Sensing and Perception Laboratory
Kod*lab
Degree type
Discipline
Subject
GRASP
Kodlab
Engineering
Funder
Grant number
License
Copyright date
Distributor
Related resources
Contributor
Abstract

Recent developments in dynamic legged locomotion have focused on encoding a substantial component of leg intelligence into passive compliant mechanisms. One of the limitations of this approach is reduced adaptability: the final leg mechanism usually performs optimally for a small range of conditions (i.e. a certain robot weight, terrain, speed, gait, and so forth). For many situations in which a small locomotion system experiences a change in any of these conditions, it is desirable to have a variable stiffness leg to tune the natural frequency of the system for effective gait control. In this paper, we present an overview of variable stiffness leg spring designs, and introduce a new approach specifically for autonomous dynamic legged locomotion. We introduce a simple leg model that captures the spatial compliance of the tunable leg in three dimensions. Lastly, we present the design and manufacture of the multi-directional variable stiffness legs, and experimentally validate their correspondence to the proposed model.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2007-01-01
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
@inproceedings{ Galloway.07, Author = {Galloway, K.C. and Clark, J.E. and Koditschek, D.E.}, Title = {Design of a Multi-Directional Variable Stiffness Leg for Dynamic Runnings}, BookTitle = {ASME Int. Mech. Eng. Congress and Exposition}, Year = {2007}}
Recommended citation
Collection