Optimization and Translation of MSC-Based Hyaluronic Acid Hydrogels for Cartilage Repair

Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
tissue engineering
hyaluronic acid
mesenchymal stem cells
Biomechanics and Biotransport
Biomedical Engineering and Bioengineering
Molecular, Cellular, and Tissue Engineering
Grant number
Copyright date
Related resources

Traumatic injury and disease disrupt the ability of cartilage to carry joint stresses and, without an innate regenerative response, often lead to degenerative changes towards the premature development of osteoarthritis. Surgical interventions have yet to restore long-term mechanical function. Towards this end, tissue engineering has been explored for the de novo formation of engineered cartilage as a biologic approach to cartilage repair. Research utilizing autologous chondrocytes has been promising, but clinical limitations in their yield have motivated research into the potential of mesenchymal stem cells (MSCs) as an alternative cell source. MSCs are multipotent cells that can differentiate towards a chondrocyte phenotype in a number of biomaterials, but no combination has successfully recapitulated the native mechanical function of healthy articular cartilage. The broad objective of this thesis was to establish an MSC-based tissue engineering approach worthy of clinical translation. Hydrogels are a common class of biomaterial used for cartilage tissue engineering and our initial work demonstrated the potential of a photo-polymerizable hyaluronic acid (HA) hydrogel to promote MSC chondrogenesis and improved construct maturation by optimizing macromer and MSC seeding density. The beneficial effects of dynamic compressive loading, high MSC density, and continuous mixing (orbital shaker) resulted in equilibrium modulus values over 1 MPa, well in range of native tissue. While compressive properties are crucial, clinical translation also demands that constructs stably integrate within a defect. We utilized a push-out testing modality to assess the in vitro integration of HA constructs within artificial cartilage defects. We established the necessity for in vitro pre-maturation of constructs before repair to achieve greater integration strength and compressive properties in situ. Combining high MSC density and gentle mixing resulted in integration strength over 500 kPa, nearly 10-fold greater than previous reports of integration with MSC-based constructs. Furthermore, we demonstrated the durability of this repair system by applying dynamic loading and showed its functional contribution to the distribution of compressive loads across the repair space. Overall, the studies contained within this thesis offer the first MSC-based tissue engineering strategy that successfully recapitulates native mechanical function while also demonstrating the potential for complete functional cartilage repair.

Robert L. Mauck
Date of degree
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher DOI
Journal Issue
Recommended citation