Gandal, Michael J.
Email Address
ORCID
Disciplines
Search Results
Now showing 1 - 2 of 2
Publication Ketamine Modulates Theta and Gamma Oscillations(2009-01-01) Lazarewicz, Maciej T.; Ehrilichman, Richard S.; Gandal, Michael J.; Maxwell, Christina R.; Siegel, Steven J.; Finkel, Leif H.Ketamine, an N-methyl-D-aspartate (NMDA) receptor glutamatergic antagonist, has been studied as a model of schizophrenia when applied in subanesthetic doses. In EEG studies, ketamine affects sensory gating and alters the oscillatory characteristics of neuronal signals in a complexmanner. We investigated the effects of ketamine on in vivo recordings from the CA3 region of mouse hippocampus referenced to the ipsilateral frontal sinus using a paired-click auditory gating paradigm. One issue of particular interest was elucidating the effect of ketamine on background network activity, poststimulus evoked and induced activity. We find that ketamine attenuates the theta frequency band in both background activity and in poststimulus evoked activity. Ketamine also disrupts a late, poststimulus theta power reduction seen in control recordings. In the gamma frequency range, ketamine enhances both background and evoked power, but decreases relative induced power. These findings support a role for NMDA receptors in mediating the balance between theta and gamma responses to sensory stimuli, with possible implications for dysfunction in schizophrenia.Publication mGluR5-Antagonist Mediated Reversal of Elevated Stereotyped, Repetitive Behaviors in the VPA Model of Autism(2011-10-07) Mehta, Mili V; Gandal, Michael J.; Siegel, Steven JAutism spectrum disorders (ASD) are highly disabling developmental disorders with a population prevalence of 1–3%. Despite a strong genetic etiology, there are no current therapeutic options that target the core symptoms of ASD. Emerging evidence suggests that dysfunction of glutamatergic signaling, in particular through metabotropic glutamate receptor 5 (mGluR5) receptors, may contribute to phenotypic deficits and may be appropriate targets for pharmacologic intervention. This study assessed the therapeutic potential of 2-methyl-6-phenylethyl-pyrididine (MPEP), an mGluR5-receptor antagonist, on repetitive and anxiety-like behaviors in the valproic acid (VPA) mouse model of autism. Mice were exposed prenatally on day E13 to VPA and assessed for repetitive self-grooming and marble burying behaviors as adults. Anxiety-like behavior and locomotor activity were measured in an open-field. VPA-exposed mice displayed increased repetitive and anxiety-like behaviors, consistent with previously published results. Across both marble burying and self-grooming assays, MPEP significantly reduced repetitive behaviors in VPA-treated mice, but had no effect on locomotor activity. These results are consistent with emerging preclinical literature that mGluR5-antagonists may have therapeutic efficacy for core symptoms of autism.