Beltran, William

Email Address
ORCID
Disciplines
Research Projects
Organizational Units
Position
Introduction
Research Interests

Search Results

Now showing 1 - 10 of 23
  • Publication
    Age-Dependent Disease Expression Determines Remodeling of the Retinal Mosaic in Carriers of RPGR Exon ORFn15 Mutations
    (2009-08-01) Beltran, William; Aguirre, Gustavo D; Acland, Gregory M
    PURPOSE. To characterize the retinal histopathology in carriers of X-linked progressive retinal atrophy (XLPRA1 and XLPRA2), two canine models of X-linked retinitis pigmentosa caused, respectively, by a stop and a frameshift mutation in RPGRORF15. METHODS. Retinas of XLPRA2 and XLPRA1 carriers of different ages were processed for morphologic evaluation, TUNEL assay, and immunohistochemistry. Cell-specific markers were used to examine retinal remodeling events. RESULTS. A mosaic pattern composed of patches of diseased and normal retina was first detected in XLPRA2 carriers at 4.9 weeks of age. A peak of photoreceptor cell death led to focal rod loss; however, in these patches an increased density of cones was found to persist over time. Patches of disease gradually disappeared so that by 39 weeks of age the overall retinal morphology, albeit thinner, had improved lamination. In older XLPRA2 carriers (≥8.8 years), extended regions of severe degeneration occurred in the peripheral/mid-peripheral retina. In XLPRA1 carriers, opsin mislocalization and rare events of rod death were detected by TUNEL assay at 20 weeks of age; however, only patchy degeneration was seen by 1.4 years and was still apparent at 7.8 years. CONCLUSIONS. The time of onset and the progression of the disease differed between the two models. In the early-onset form (XLPRA2) the morphologic appearance of the retinal mosaic changed as a function of age, suggesting that structural plasticity persists in the early postnatal canine retina as mutant photoreceptors die. In the late-onset form (XLPRA1), patches of disease persisted until later ages.
  • Publication
    Intravitreal Injection of Ciliary Neurotrophic Factor (CNTF) Causes Peripheral Remodeling and Does Not Prevent Photoreceptor Loss in Canine RPGR Mutant Retina
    (2007-04-01) Beltran, William; Aguirre, Gustavo D; Wen, Rong; Acland, Gregory M
    Ciliary neurotrophic factor (CNTF) rescues photoreceptors in several animal models of retinal degeneration and is currently being evaluated as a potential treatment for retinitis pigmentosa in humans. This study was conducted to test whether CNTF prevents photoreceptor cell loss in XLPRA2, an early onset canine model of X-linked retinitis pigmentosa caused by a frameshift mutation in RPGR exon ORF15. Four different treatment regimens of CNTF were tested in XLPRA2 dogs. Under anesthesia, the animals received at different ages an intravitreal injection of 12 μg of CNTF in the left eye. The right eye served as a control and was injected with a similar volume of phosphate buffered saline (PBS). Ocular examinations were performed regularly during the treatment periods. At termination, the dogs were euthanatized, eyes collected and the retinas were processed for embedding in optimal cutting temperature (OCT) medium. The outer nuclear layer (ONL) thickness was evaluated on H&E sections and values in both CNTF- and PBS-treated eyes were compared. Morphologic alterations in the peripheral retina were characterized by immunohistochemistry using cell-specific markers. Cell proliferation in the retinas was examined on semi-thin plastic sections, and by BrdU pulse-labeling and Ki67 immunohistochemistry on cryosections. All CNTF-treated eyes showed early clinical signs of corneal epitheliopathy, subcapsular cataracts and uveitis. No statistically significant difference in ONL thickness was seen between the CNTF- and PBS-injected eyes. Prominent retinal remodeling that consisted in an abnormal increase in the number of rods, and in misplacement of some rods, cones, bipolar and Müller cells, was observed in the peripheral retina of CNTF-treated eyes. This was only seen when CNTF was in injected before the age at which the canine retina reaches full maturation. In XLPRA2 dogs, intravitreal injections of CNTF failed to prevent photoreceptors from undergoing cell death in the central and mid-peripheral retina. CNTF also caused ocular side-effects and morphologic alterations in the periphery that were consistent with cell dedifferentiation and proliferation. Our findings suggest that some inherited forms of retinal degeneration may not respond to CNTF's neuroprotective effects.
  • Publication
    rAAV2/5 Gene-Targeting to Rods: Dose-Dependent Efficiency and Complications Associated With Different Promoters
    (2010-09-01) Beltran, William; Aguirre, Gustavo D; Boye, Sanford L; Boye, Shannon E; Chiodo, Vince A; Lewin, Alfred S; Hauswirth, William W
    A prerequisite for using corrective gene therapy to treat humans with inherited retinal degenerative diseases that primarily affect rods is to develop viral vectors that target specifically this population of photoreceptors. The delivery of a viral vector with photoreceptor tropism coupled with a rod-specific promoter is likely to be the safest and most efficient approach to target expression of the therapeutic gene to rods. Three promoters that included a fragment of the proximal mouse opsin promoter (mOP), the human G-protein-coupled receptor protein kinase 1 promoter (hGRK1), or the cytomegalovirus immediate early enhancer combined with the chicken β actin proximal promoter CBA were evaluated for their specificity and robustness in driving GFP reporter gene expression in rods, when packaged in a recombinant adeno-associated viral vector of serotype 2/5 (AAV2/5), and delivered via subretinal injection to the normal canine retina. Photoreceptor-specific promoters (mOP, hGRK1) targeted robust GFP expression to rods, whereas the ubiquitously expressed CBA promoter led to transgene expression in the retinal pigment epithelium, rods, cones and rare Müller, horizontal and ganglion cells. Late onset inflammation was frequently observed both clinically and histologically with all three constructs when the highest viral titers were injected. Cone loss in the injected regions of the retinas that received the highest titers occurred with both the hGRK1 and CBA promoters. Efficient and specific rod transduction, together with preservation of retinal structure was achieved with both mOP and hGRK1 promoters when viral titers in the order of 1011 vg ml–1 were used.
  • Publication
    Assessment of Visual Function and Retinal Structure Following Acute Light Exposure in the Light Sensitive T4R Rhodopsin Mutant Dog
    (2016-05-01) Iwabe, Simone; Aguirre, Gustavo D; Beltran, William A; Ying, Gui-shuang
    The effect of acute exposure to various intensities of white light on visual behavior and retinal structure was evaluated in the T4R RHO dog, a naturally-occurring model of autosomal dominant retinitis pigmentosa due to a mutation in the Rhodopsin gene. A total of 14 dogs (ages: 4–5.5 months) were used in this study: 3 homozygous mutant RHOT4R/T4R, 8 heterozygous mutant RHOT4R/+, and 3 normal wild-type (WT) dogs. Following overnight dark adaptation, the left eyes were acutely exposed to bright white light with a monocular Ganzfeld dome, while the contralateral right eye was shielded. Each of the 3 homozygous (RHOT4R/T4R) mutant dogs had a single unilateral light exposure (LE) to a different (low, moderate, and high) dose of white light (corneal irradiance/illuminance: 0.1 mW/cm2 , 170 lux; 0.5 mW/cm2 , 820 lux; or 1 mW/cm2 , 1590 lux) for 1min. All 8 heterozygous (RHOT4R/+) mutant dogs were exposed once to the same moderate dose of light. The 3 WT dogs had their left eyes exposed 1, 2, or 3 times to the same highest dose of light. Visual function prior to LE and at 2 weeks and 33 weeks after exposure was objectively assessed in the RHOT4R/T4R and WT dogs by using an obstacle-avoidance course. Transit time through the obstacle course was measured under different scotopic to photopic ambient illuminations. Morphological retinal changes were evaluated by non-invasive in vivo cSLO/sdOCT imaging and histology before and at several time-points (2–36 weeks) after light exposure. The analysis of the transit time through the obstacle course showed that no differences were observed in any of mutant or WT dogs at 2 weeks and 33 weeks post LE. The RHOT4R/T4R retina exposed to the lowest dose of white light showed no obvious changes in ONL thickness at 2 weeks, but mild decrease was noted 36 weeks after LE. The RHOT4R/T4R retina that received a moderate dose (showed an obvious decrease in ONL thickness along the superior and temporal meridians at 2 weeks post LE with more severe damage at 36 weeks post LE in all four meridians. The RHOT4R/T4R retina exposed to the high dose showed at 2 weeks after LE extensive ONL damage in all four meridians. This light intensity did not cause any retinal damage in WT dogs even after repeated (up to 3) LE. Analysis of ONL thickness in heterozygous mutant dogs exposed to the moderate dose of light confirmed the increased sensitivity to light damage of the superior/ tapetal retina, and the occurrence of an ongoing cell death process several weeks after the acute LE. In conclusion, a short single exposure to a dose of white light that is not retinotoxic in WT dogs causes in the T4R RHO retina an acute loss of ONL in the central to mid peripheral region that keeps progressing over the course of several weeks. However, this severe retinal damage does not affect visual behavior presumably because of islands of surviving photoreceptors found in the area centralis including the newly discovered canine fovea-like area, and the lack of damage to peripheral photoreceptors.
  • Publication
    Décollement Rétinien Associé à une Cataracte Unilatérale [Retinal Detachments Associated with Unilateral Cataracts]
    (2001-06-01) Beltran, William; Jégou, Jean-Pierre
    Le décollement de rétine rend la chirurgie de la cataracte inutile : il doit donc être recherché lors de l'examen préopératoire. La technique de choix dans le diagnostic de cette affection est l'échographie oculaire. L'étude de huit cas révèle l'intérêt de cet examen dans le diagnostic des décollements de rétine associés à la cataracte chez le chien à travers la variété des images échographiques obtenues.
  • Publication
    Immunolocalization of Ciliary Neurotrophic Factor Receptor α (CNTFRα) in Mammalian Photoreceptor Cells
    (2005-04-01) Beltran, William; Aguirre, Gustavo D; Rohrer, Hermann
    PURPOSE: To characterize the site of expression of the α subunit of the receptor for ciliary neurotrophic factor (CNTFRα) in the retina of a variety of mammalian species, and determine whether CNTFRα is localized to photoreceptor cells. METHODS: The cellular distribution of CNTFRα (protein) was examined by immunocytochemistry in the adult retinas of several mammalian species that included mouse, rat, dog, cat, sheep, pig, horse, monkey, and human. Developing retinas from 3-day-old and 6-day-old rats were also included in this study. The molecular weight of CNTFRα in rat, dog, cat, pig, and human retinas was determined by immunoblotting. RESULTS: CNTFRα immunolabeling was present in the retina of all species. A common pattern was observed in all species, and represented labeling of the nerve fiber layer (NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), and outer plexiform layer (OPL). CNTFRα did not immunolocalize to photoreceptor cells in both adult and developing rodent retinas, but was consistently observed in both rods and cones of non-rodent species. The molecular weight of CNTFRα in mammalian retinas was approximately 61-64 kDa. CONCLUSIONS: These findings highlight a significant difference in the expression of CNTFRα in the retina of rodent and non-rodent mammalian species. The expression of CNTFRα by rods and cones in non-rodent species may suggest a direct mechanism of action if CNTF administration results in photoreceptor rescue.
  • Publication
    Clinical Light Exposure, Photoreceptor Degeneration, and AP-1 Activation: A Cell Death or Cell Survival Signal in the Rhodopsin Mutant Retina?
    (2007-11-01) Beltran, William; Aguirre, Gustavo D; Gu, Danian; Li, Zexiao; Acland, Gregory M
    PURPOSE. The T4R RHO mutant dog retina shows retinal degeneration with exposures to light comparable to those used in clinical eye examinations of patients. To define the molecular mechanisms of the degeneration, AP-1 DNA-binding activity, composition, posttranslational modification of the protein complex, and modulation of ERK/MAPK signaling pathways were examined in light-exposed mutant retinas. METHODS. Dark-adapted retinas were exposed to short-duration light flashes from a retinal camera used clinically for retinal photography and were collected at different time points after exposure. Electrophoretic mobility shift assay (EMSA), supershift EMSA, Western blot analysis, and immunocytochemistry were used to examine AP-1 signaling. RESULTS. Exposure to light of mutant retinas significantly increased AP-1 DNA-binding activity by 1 hour after exposure, and levels remained elevated for 6 hours. Shielded mutant retinas had similar AP-1 levels to shielded or exposed wild-type retinas. The parallel phosphorylation of c-Fos and activation of ERK1/2 was detected only in exposed mutant retinas. Exposure to light changed the composition of the AP-1 protein complex in the mutant retina from c-Jun/Fra-1/c-Fos to JunB/c-Fos. Immunohistochemistry showed that the components of activated AP-1 (JunB, and phosphorylated c-Fos, and phosphorylated ERK1/2 isoforms) were localized in Müller cells. CONCLUSIONS. The inner nuclear layer/Müller cell localization of the key proteins induced by light exposure raises the question of the direct involvement of AP-1 in mediating photoreceptor cell death in this model of autosomal dominant retinitis pigmentosa.
  • Publication
    Complication d'Implantation d'une Prothèse Intra-Oculaire par Prolifération d'un Adénocarcinome Iridociliaire chez un Chien [Complication of Implantation of Intraocular Prosthesis by Proliferation of an Iridociliary Adenocarcinoma in a Dog]
    (2000-04-01) Beltran, William; Chahory, Sabine; Clerc, Bernard
    Un chien est opéré d'un glaucome par implantation d'une prothèse intrasclèrale. Trois ans après l'intervention chirurgicale, l'animal présente un adénocarcinome iridociliaire sur l'oeil opéré qui fait alors l'objet d'une exentération. Une revue de la littérature permet de souligner la rareté de la prolifération d'une tumeur intra-oculaire après la pose d'un implant. Lors de glaucome dont la cause est inconnue, l'examen échographique pré-opératoire et l'analyse histologique du tissu d'éviscération permettent de choisir entre une énucléation et la mise en place d'une prothèse intrasclèrale. An intrascleral prosthesis was implanted in a dog undergoing surgery for glaucoma. Three years after the surgical intervention, the animal was presented with an iridociliary adenocarcinoma on the operated eye, which was then enucleated. A literature search revealed that intraocular tumours rarely proliferate after placement of an implant. When presented with a case of glaucoma of unknown cause, pre operative ultrasonography and histology of eviscerated tissue allows a choice of either enucleation or placement of an intrascleral prosthesis.
  • Publication
    Recombinant AAV-Mediated BEST1 Transfer to the Retinal Pigment Epithelium: Analysis of Serotype-Dependent Retinal Effects
    (2013-10-15) Guziewicz, Karina E; Zangerl, Barbara; Komáromy, András M; Beltran, William; Iwabe, Simone; Chiodo, Vincent A; Boye, Sanford L; Hauswirth, William W
    Mutations in the BEST1 gene constitute an underlying cause of juvenile macular dystrophies, a group of retinal disorders commonly referred to as bestrophinopathies and usually diagnosed in early childhood or adolescence. The disease primarily affects macular and paramacular regions of the eye leading to major declines in central vision later in life. Currently, there is no cure or surgical management for BEST1-associated disorders. The recently characterized human disease counterpart, canine multifocal retinopathy (cmr), recapitulates a full spectrum of clinical and molecular features observed in human bestrophinopathies and offers a valuable model system for development and testing of therapeutic strategies. In this study, the specificity, efficiency and safety of rAAV-mediated transgene expression driven by the human VMD2 promoter were assessed in wild-type canine retinae. While the subretinal delivery of rAAV2/1 vector serotype was associated with cone damage in the retina when BEST1 and GFP were co-expressed, the rAAV2/2 vector serotype carrying either GFP reporter or BEST1 transgene under control of human VMD2 promoter was safe, and enabled specific transduction of the RPE cell monolayer that was stable for up to 6 months post injection. These encouraging studies with the rAAV2/2 vector lay the groundwork for development of gene augmentation therapy for human bestrophinopathies.
  • Publication
    Steroids Do Not Prevent Photoreceptor Degeneration in the Light-Exposed T4R Rhodopsin Mutant Dog Retina Irrespective of AP-1 Inhibition
    (2009-07-01) Beltran, William; Aguirre, Gustavo D; Gu, Danian; Pearce-Kelling, Sue; Li, Zexiao; Acland, Gregory M
    PURPOSE. AP-1 has been proposed as a key intermediate linking exposure to light and photoreceptor cell death in rodent light-damage models. Inhibition of AP-1 associated with steroid administration also prevents light damage. In this study the role of steroids in inhibiting AP-1 activation and/or in preventing photoreceptor degeneration was examined in the rhodopsin mutant dog model. METHODS. The dogs were dark adapted overnight, eyes dilated with mydriatics; the right eye was light occluded and the fundus of the left eye photographed (∼15–17 overlapping frames) with a fundus camera. For biochemical studies, the dogs remained in the dark for 1 to 3 hours after exposure. Twenty-four hours before exposure to light, some dogs were treated with systemic dexamethasone or intravitreal/subconjunctival triamcinolone. AP-1 DNA-binding activity was determined by electrophoresis mobility shift assay (EMSA) and phosphorylation of c-Fos and activation of ERK1/2 were determined by immunoblot analyses. The eyes were collected 1 hour and 2 weeks after exposure to light, for histopathology and immunocytochemistry. RESULTS. Inhibition of AP-1 activation, and phosphorylation of ERK1/2 and c-Fos were found after dexamethasone treatment in light-exposed T4R RHO mutant dog retinas. In contrast, increased AP-1 activity and phosphorylation of c-Fos and ERK1/2 were found in triamcinolone-treated mutant retinas. Similar extensive rod degeneration was found after exposure to light with or without treatment, and areas with surviving photoreceptor nuclei consisted primarily of cones. Only with systemic dexamethasone did the RPE cell layer remain. CONCLUSIONS. Intraocular or systemic steroids fail to prevent light-induced photoreceptor degeneration in the T4R RHO dog retina. Finding that systemic dexamethasone prevents AP-1 activation, yet does not prevent retinal light damage, further supports the hypothesis that AP-1 is not the critical player in the cell-death signal that occurs in rods.