Hammer, Daniel A
Email Address
ORCID
Disciplines
Search Results
Now showing 1 - 10 of 25
Publication Quantitative Membrane Loading of Polymer Vesicles(2006-11-07) Ghoroghchian, P. Peter; Lin, John J; Brannon, Aaron K; Frail, Paul R; Therien, Michael J; Bates, Frank S; Hammer, Daniel AWe utilize a series of structurally homologous, multi-porphyrin-based, fluorophores (PBFs) in order to explore the capacity of polymer vesicles (polymersomes) to stably incorporate large hydrophobic molecules, non-covalently within their thick lamellar membranes. Through aqueous hydration of dry, uniform thin-films of amphiphilic polymer and PBF species deposited on Teflon, self-assembled polymersomes are readily generated incorporating the hydrophobic fluorophores in prescribed molar ratios within their membranes. The size-dependent spectral properties of the PBFs allow for ready optical verification (via steady-state absorption and emission spectroscopy) of the extent of vesicle membrane loading and enable delineation of intermembranous molecular interactions. The resultant effects of PBF membrane-loading on polymersome thermodynamic and mechanical stability are further assessed by cryogenic transmission electron microscopy (cryo-TEM) and micropipet aspiration, respectively. We demonstrate that polymersomes can be loaded at up to 10 mol/wt% concentrations, with hydrophobic molecules that possess sizes comparable to those of large pharmaceutical conjugates (e.g. ranging 1.4–5.4 nm in length and Mw = 0.7–5.4 kg mol–1), without significantly compromising the robust thermodynamic and mechanical stabilities of these synthetic vesicle assemblies. Due to membrane incorporation, hydrophobic encapsulants are effectively prevented from self-aggregation, able to be highly concentrated in aqueous solution, and successfully shielded from deleterious environmental interactions. Together, these studies present a generalized paradigm for the generation of complex multi-functional materials that combine both hydrophilic and hydrophobic agents, in mesoscopic dimensions, through cooperative self-assembly.Publication Multiparticle Adhesive Dynamics. Interactions between Stably Rolling Cells(2001-08-01) King, Michael R; Hammer, Daniel AA novel numerical simulation of adhesive particles (cells) reversibly interacting with an adhesive surface under flow is presented. Particle–particle and particle–wall hydrodynamic interactions in low Reynolds number Couette flow are calculated using a boundary element method that solves an integral representation of the Stokes equation. Molecular bonds between surfaces are modeled as linear springs and stochastically formed and broken according to postulated descriptions of force-dependent kinetics. The resulting simulation, Multiparticle Adhesive Dynamics, is applied to the problem of selectin-mediated rolling of hard spheres coated with leukocyte adhesion molecules (cell-free system). Simulation results are compared to flow chamber experiments performed with carbohydrate-coated spherical beads rolling on P-selectin. Good agreement is found between theory and experiment, with the main observation being a decrease in rolling velocity with increasing concentration of rolling cells or increasing proximity between rolling cells. Pause times are found to increase and deviation motion is found to decrease as pairs of rolling cells become closer together or align with the flow.Publication A Microcantilever Device to Assess the Effect of Force on the Lifetime of Selectin-Carbohydrate Bonds(2001-02-01) Tees, Davis F. J.; Waugh, Richard E; Hammer, Daniel AA microcantilever technique was used to apply force to receptor-ligand molecules involved in leukocyte rolling on blood vessel walls. E-selectin was adsorbed onto 3-μm-diameter, 4-mm-long glass fibers, and the selectin ligand, sialyl Lewisx, was coupled to latex microspheres. After binding, the microsphere and bound fiber were retracted using a computerized loading protocol that combines hydrodynamic and Hookean forces on the fiber to produce a range of force loading rates (force/time), rf. From the distribution of forces at failure, the average force was determined and plotted as a function of ln rf. The slope and intercept of the plot yield the unstressed reverse reaction rate, kro , and a parameter that describes the force dependence of reverse reaction rates, ro. The ligand was titrated so adhesion occurred in ~30% of tests, implying that >80% of adhesive events involve single bonds. Monte Carlo simulations show that this level of multiple bonding has little effect on parameter estimation. The estimates are ro = 0.048 and 0.016 nm and kro = 0.72 and 2.2 s-1 for loading rates in the ranges 200–1000 and 1000–5000 pN s-1, respectively. Levenberg-Marquardt fitting across all values of rf gives ro = 0.034 nm and kro = 0.82 s-1. The values of these parameters are in the range required for rolling, as suggested by adhesive dynamics simulations.Publication The Effect of Cellular Receptor Diffusion on Receptor-Mediated Viral Binding Using Brownian Adhesive Dynamics (BRAD) Simulations(2005-03-01) English, Thomas J.; Hammer, Daniel ABrownian adhesive dynamics (BRAD) is a new method for simulating the attachment of viruses to cell surfaces. In BRAD, the motion of the virus is subject to stochastic bond formation and breakage, and thermal motion owing to collisions from the solvent. In the model, the virus is approximated as a rigid sphere and the cell surface is approximated as a rigid plane coated with receptors. In this article, we extend BRAD to allow for the mobility of receptors in the plane of the membrane, both before and after they are ligated by viral attachment proteins. Allowing the proteins to move within the membrane produced several differences in behavior from when the receptors are immobilized. First, the mean steady-state bond number is unaffected by changes in cellular receptor density because proteins are now free to diffuse into the contact area, and the extent of binding is dictated by the availability of viral attachment proteins. Second, the time required to reach steady-state binding increases as both the cellular receptor number decreases and the receptor mobility decreases. This is because receptor diffusion is a slower process than the binding kinetics of the proteins. Decreasing the rate of protein binding was found to decrease the fraction of viruses bound to steady state, but not the extent of binding for those viruses that were bound. Increasing the binding rate increased the fraction of viruses bound, until no further viruses could bind. Alterations in receptor binding kinetics had no discernable effect on the mean steady-state bond number between virus and cell, because interactions were of sufficiently high affinity that all available receptor-viral attachment proteins were destined to bind at steady state.Publication Integrin-mediated signalling through the MAP-kinase pathway(2008-01-01) Yee, Ka Lai; Weaver, V. M; Hammer, Daniel AThe mitogen activated protein (MAP) kinase cascade, leading to extracellular-regulated kinase (ERK) activation, is a key regulator of cell growth and proliferation. The effects of ERK are mediated by differences in ERK signalling dynamics, including magnitude and duration. In vivo, ERK signalling is stimulated by both growth factors and adhesion signals. A model for adhesionmediated ERK activation is presented. Outputs of the model such as ERK and FAK activation, as well as responses to different ligand densities, are compared with published experimental data. The model then serves as a basis for understanding how adhesion may contribute to ERK signalling through changes in the dynamics of focal adhesion kinase activation. The main parameters influencing ERK are determined through screening analyses and parameter variation. With these parameters, key points in the pathway that give rise to changes in downstream signalling dynamics are identified. In particular, oncogenic Raf and Ras promote cell growth by increasing the magnitude and duration, respectively, of ERK activity.Publication Adhesive Dynamics Simulations of the Shear Threshold Effect for Leukocytes(2008-02-01) Kaputo, Kelly; Lee, Dooyoung; King, Michael R; Hammer, Daniel AMany experiments have measured the effect of force on the dissociation of single selectin bonds, but it is not yet clear how the force dependence of molecular dissociation can influence the rolling of cells expressing selectin molecules. Recent experiments using constant-force atomic force microscopy or high-resolution microscopic observations of pause-time distributions of cells in a flow chamber show that for some bonds, the dissociation rate is high at low force and initially decreases with force, indicating a catch bond. As the force continues to increase, the dissociation rate increases again, like a slip bond. It has been proposed that this catch-slip bond leads to the shear threshold effect, in which a certain level of shear rate is required to achieve rolling. We have incorporated a catch-slip dissociation rate into adhesive dynamics simulations of cell rolling. Using a relatively simple model for the shear-controlled association rate for selectin bonds, we were able to recreate characteristics of the shear threshold effect seen most prominently for rolling through L-selectin. The rolling velocity as a function of shear rate showed a minimum near 100 s–1. Furthermore, cells were observed to roll at a shear rate near the threshold, but detach and move more quickly when the shear rate was dropped below the threshold. Finally, using adhesive dynamics, we were able to determine ranges of parameters necessary to see the shear threshold effect in the rolling velocity. In summary, we found through simulation that the catch-slip behavior of selectin bonds can be responsible for the shear threshold effect.Publication I-Domain of Lymphocyte Function-Associated Antigen-1 Mediates Rolling of Polystyrene Particles on ICAM-1 under Flow(2005-11-01) Eniola, A. Omolala; Krasik, Ellen F; Smith, Lee A; Song, Gang; Hammer, Daniel AIn their active state, ß2-integrins, such as LFA-1, mediate the firm arrest of leukocytes by binding intercellular adhesion molecules (ICAMs) expressed on endothelium. Although the primary function of LFA-1 is assumed to be the ability to mediate firm adhesion, recent work has shown that LFA-1 can contribute to cell tethering and rolling under hydrodynamic flow, a role previously largely attributed to the selectins. The inserted (I) domain of LFA-1 has recently been crystallized in the wildtype (wt) and locked-open conformations and has been shown to, respectively, support rolling and firm adhesion under flow when expressed in αLß2 heterodimers or as isolated domains on cells. Here, we report results from cell-free adhesion assays where wt I-domain-coated polystyrene particles were allowed to interact with ICAM-1-coated surfaces in shear flow. We show that wt I-domain can independently mediate the capture of particles from flow and support their rolling on ICAM-1 surfaces in a manner similar to how carbohydrate-selectin interactions mediate rolling. Adhesion is specific and blocked by appropriate antibodies. We also show that the rolling velocity of I-domain-coated particles depends on the wall shear stress in flow chamber, I-domain site density on microsphere surfaces, and ICAM-1 site density on substrate surfaces. Furthermore, we show that rolling is less sensitive to wall shear stress and ICAM-1 substrate density at high density of I-domain on the microsphere surface. Computer simulations using adhesive dynamics can recreate bead rolling dynamics and show that the mechanochemical properties of ICAM-1-I-domain interactions are similar to those of carbohydrate-selectin interactions. Understanding the biophysics of adhesion mediated by the I-domain of LFA-1 can elucidate the complex roles this integrin plays in leukocyte adhesion in inflammation.Publication Pore Stability and Dynamics in Polymer Membranes(2003-11-15) Bermudez, Harry; Hammer, Daniel A; Aranda-Espinoza, Helim; Discher, Dennis EVesicles self-assembled from amphiphilic diblock copolymers exhibit a wide diversity of behavior upon poration, due to competitions between edge, surface and bending energies, while viscous dissipation mechanisms determine the time scales. The copolymers are essentially chemically identical, only varying in chain length (related to the membrane thickness d). For small d, we find large unstable pores and the resulting membrane fragments reassemble into vesicles within minutes. For large d, however, submicron pores form and are extremely long-lived. The results show that pore behavior depends strongly on d, suggesting that the relevant energies depend on d and pore size r in a more complexmanner than what is generally assumed. Further control over these systems would make them useful for numerous applications.Publication Differential Adhesion of Microspheres Mediated by DNA Hybridization I: Experiment(2006-03-13) Zhang, Ying; Graves, David J; Milam, Valeria T; Hammer, Daniel AWe have developed a novel method to study collective behavior of multiple hybridized DNA chains by measuring the adhesion of DNA-coated micron-scale beads under hydrodynamic flow. Beads coated with single-stranded DNA probes are linked to surfaces coated with single target strands through DNA hybridization, and hydrodynamic shear forces are used to discriminate between strongly and weakly bound beads. The adhesiveness of microspheres depends on the strength of interaction between DNA chains on the bead and substrate surfaces, which is a function of the degree of DNA chain overlap, the fidelity of the match between hybridizing pairs, and other factors that affect the hybridization energy, such as the salt concentration in the hybridization buffer. The force for bead detachment is linearly proportional to the degree of chain overlap. There is a detectable drop in adhesion strength when there is a single base mismatch in one of the hybridizing chains. The effect of single nucleotide mismatch was tested with two different strand chemistries, with mutations placed at several different locations. All mutations were detectable, but there was no comprehensive rule relating the drop in adhesive strength to the location of the defect. Since adhesiveness can be coupled to the strength of overlap, the method holds promise to be a novel methodology for oligonucleotide detection.Publication Interplay between Rolling and Firm Adhesion Elucidated with a Cell-Free System Engineered with Two Distinct Receptor-Ligand Pairs(2003-10-01) Eniola, A. Omolola; Willcox, P. Jeanene; Hammer, Daniel AThe firm arrest of leukocytes to the endothelium during inflammation is known to be mediated by endothelial intercellular adhesion molecules (ICAMs) binding to activated integrins displayed on leukocyte surface. Selectin-ligand interactions, which mediate rolling, are believed to be important for facilitating firm adhesion, either by activating integrins or by facilitating the transition to firm adhesion by making it easier for integrins to bind. Although leukocytes employ two distinct adhesion molecules that mediate different states of adhesion, the fundamental biophysical mechanisms by which two pairs of adhesion molecules facilitate cell adhesion is not well understood. In this work, we attempt to understand the interaction between two molecular systems using a cell-free system in which polystyrene microspheres functionalized with the selectin ligand, sialyl LewisX (sLeX), and an antibody against ICAM-1, aICAM-1, are perfused over P-selectin/ICAM-1 coated surfaces in a parallel plate flow chamber. Separately, sLeX/P-selectin interactions support rolling and aICAM-1/ICAM-1 interactions mediate firm adhesion. Our results show that sLeX/aICAM-1 microspheres will firmly adhere to P-selectin/ICAM-1 coated surfaces, and that the extent of firm adhesion of microspheres is dependent on wall shear stress within the flow chamber, sLeX/aICAM-1 microsphere site density, and P-selectin/ICAM-1 surface density ratio. We show that P-selectin’s interaction with sLeX mechanistically facilitates firm adhesion mediated by antibody binding to ICAM-1: the extent of firm adhesion for the same concentration of aICAM-1/ICAM-1 interaction is greater when sLeX/P-selectin interactions are present. aICAM-1/ICAM-1 interactions also stabilize rolling by increasing pause times and decreasing average rolling velocities. Although aICAM-1 is a surrogate for β2-integrin, the kinetics of association between aICAM-1 and ICAM-1 is within a factor of 1.5 of activated integrin binding ICAM-1, suggesting the findings from this model system may be insightful to the mechanism of leukocyte firm adhesion. In particular, these experimental results show how two molecule systems can interact to produce an effect not achievable by either system alone, a fundamental mechanism that may pervade leukocyte adhesion biology.
- «
- 1 (current)
- 2
- 3
- »