Karvounarakis, Grigoris
Email Address
ORCID
Disciplines
Search Results
Now showing 1 - 4 of 4
Publication Update Exchange With Mappings and Provenance(2007-11-27) Green, Todd J; Karvounarakis, Grigoris; Ives, Zachary G; Tannen, ValWe consider systems for data sharing among heterogeneous peers related by a network of schema mappings. Each peer has a locally controlled and edited database instance, but wants to ask queries over related data from other peers as well. To achieve this, every peer’s updates propagate along the mappings to the other peers. However, this update exchange is filtered by trust conditions — expressing what data and sources a peer judges to be authoritative — which may cause a peer to reject another’s updates. In order to support such filtering, updates carry provenance information. These systems target scientific data sharing applications, and their general principles and architecture have been described in [21]. In this paper we present methods for realizing such systems. Specifically, we extend techniques from data integration, data exchange, and incremental view maintenance to propagate updates along mappings; we integrate a novel model for tracking data provenance, such that curators may filter updates based on trust conditions over this provenance; we discuss strategies for implementing our techniques in conjunction with an RDBMS; and we experimentally demonstrate the viability of our techniques in the Orchestra prototype system. This technical report supersedes the version which appeared in VLDB 2007 [17] and corrects certain technical claims regarding the semantics of our system (see errata in Sections [3.1] and [4.1.1]).Publication Orchestra: Facilitating Collaborative Data Sharing(2007-06-11) Green, Todd J; Karvounarakis, Grigoris; Taylor, Nicholas E; Biton, Olivier; Ives, Zachary G; Tannen, ValOne of the most elusive goals of structured data management has been sharing among large, heterogeneous populations: while data integration [4, 10] and exchange [3] are gradually being adopted by corporations or small confederations, little progress has been made in integrating broader communities. Yet the need for large-scale sharing of heterogeneous data is increasing: most of the sciences, particularly biology and astronomy, have become data-driven as they have attempted to tackle larger questions. The field of bioinformatics, in particular, has seen a plethora of different databases emerge: each is focused on a related but subtly different collection of organisms (e.g., CryptoDB, TIGR, FlyNome), genes (GenBank, GeneDB), proteins (UniProt, RCSB Protein Databank), diseases (OMIM, GeneDis), and so on. Such communities have a pressing need to interlink their heterogeneous databases in order to facilitate scientific discovery.Publication Provenance in Collaborative Data Sharing(2009-07-01) Karvounarakis, GrigorisThis dissertation focuses on recording, maintaining and exploiting provenance information in Collaborative Data Sharing Systems (CDSS). These are systems that support data sharing across loosely-coupled, heterogeneous collections of relational databases related by declarative schema mappings. A fundamental challenge in a CDSS is to support the capability of update exchange --- which publishes a participant's updates and then translates others' updates to the participant's local schema and imports them --- while tolerating disagreement between them and recording the provenance of exchanged data, i.e., information about the sources and mappings involved in their propagation. This provenance information can be useful during update exchange, e.g., to evaluate provenance-based trust policies. It can also be exploited after update exchange, to answer a variety of user queries, about the quality, uncertainty or authority of the data, for applications such as trust assessment, ranking for keyword search over databases, or query answering in probabilistic databases. To address these challenges, in this dissertation we develop a novel model of provenance graphs that is informative enough to satisfy the needs of CDSS users and captures the semantics of query answering on various forms of annotated relations. We extend techniques from data integration, data exchange, incremental view maintenance and view update to define the formal semantics of unidirectional and bidirectional update exchange. We develop algorithms to perform update exchange incrementally while maintaining provenance information. We present strategies for implementing our techniques over an RDBMS and experimentally demonstrate their viability in the Orchestra prototype system. We define ProQL, a query language for provenance graphs that can be used by CDSS users to combine data querying with provenance testing as well as to compute annotations for their data, based on their provenance, that are useful for a variety of applications. Finally, we develop a prototype implementation ProQL over an RDBMS and indexing techniques to speed up provenance querying, evaluate experimentally the performance of provenance querying and the benefits of our indexing techniques.Publication Provenance Semirings(2007-06-11) Green, Todd J; Karvounarakis, Grigoris; Tannen, ValWe show that relational algebra calculations for incomplete databases, probabilistic databases, bag semantics and why provenance are particular cases of the same general algorithms involving semirings. This further suggests a comprehensive provenance representation that uses semirings of polynomials. We extend these considerations to datalog and semirings of formal power series. We give algorithms for datalog provenance calculation as well as datalog evaluation for incomplete and probabilistic databases. Finally, we show that for some semirings containment of conjunctive queries is the same as for standard set semantics.