Verma, Ragini
Email Address
ORCID
Disciplines
Search Results
Now showing 1 - 4 of 4
Publication Probabilistic Segmentation of Brain Tumors Based on Multi-Modality Magnetic Resonance Images(2007-04-01) Verma, Ragini; Ou, Yangming; Cai, Hongmin; Melhem, Elias R.; Davatzikos, Christos; Lee, Seung-KooIn this paper, multi-modal Magnetic Resonance (MR) images are integrated into a tissue profile that aims at differentiating tumor components, edema and normal tissue. This is achieved by a tissue classification technique that learns the appearance models of different tissue types based on training samples identified by an expert and assigns tissue labels to each voxel. These tissue classifiers produce probabilistic tissue maps reflecting imaging characteristics of tumors and surrounding tissues that may be employed to aid in diagnosis, tumor boundary delineation, surgery and treatment planning. The main contributions of this work are: 1) conventional structural MR modalities are combined with diffusion tensor imaging data to create an integrated multimodality profile for brain tumors, and 2) in addition to the tumor components of enhancing and non-enhancing tumor types, edema is also characterized as a separate class in our framework. Classification performance is tested on 22 diverse tumor cases using cross-validation.Publication Characterizing and Analyzing Diffusion Tensor Images by Learning their Underlying Manifold Structure(2006-01-01) Khurd, Parmeshwar; Verma, Ragini; Davatzikos, ChristosThe growing importance of diffusion tensor imaging (DTI) in studying the white matter architecture in normal and pathologic states necessitates the development of tools for comprehensive analysis of diffusion tensor data. Operations such as multivariate statistical analysis and hypothesis testing, interpolation and filtering, must now be performed on tensor data, and must overcome challenges introduced by the non-linearity and high dimensionality of the tensors. In this paper, we present a novel approach to performing these computations by modeling the underlying manifold structure of the tensors, using a combination of two manifold learning techniques, isometric mapping (ISOMAP) and local tangent space alignment (LTSA). While ISOMAP identifies the dimensionality of the manifold of the tensors and embeds the tensors into a linear space, facilitating statistical computations therein, operations like interpolation and filtering, integral to the process of normalization, require the reconstruction of the tensor in the tensor domain. To obtain this reverse mapping from the linear space to the tensor domain, i.e. to the domain of the original tensor data, we use LTSA. The modeling of the underlying manifold structure renders our approach better applicable to tensor data than existing methods that may not always be able to capture the non-linearity present in the tensors under consideration. In various simulations with known ground truth, we demonstrate the effectiveness of our framework based on ISOMAP and LTSA in performing a comprehensive analysis of DTI data.Publication Class-Level Spectral Features for Emotion Recognition(2010-07-01) Verma, Ragini; Bitouk, Dmitri; Nenkova, AniThe most common approaches to automatic emotion recognition rely on utterance-level prosodic features. Recent studies have shown that utterance-level statistics of segmental spectral features also contain rich information about expressivity and emotion. In our work we introduce a more fine-grained yet robust set of spectral features: statistics of Mel-Frequency Cepstral Coefficients computed over three phoneme type classes of interest – stressed vowels, unstressed vowels and consonants in the utterance. We investigate performance of our features in the task of speaker-independent emotion recognition using two publicly available datasets. Our experimental results clearly indicate that indeed both the richer set of spectral features and the differentiation between phoneme type classes are beneficial for the task. Classification accuracies are consistently higher for our features compared to prosodic or utterance-level spectral features. Combination of our phoneme class features with prosodic features leads to even further improvement. Given the large number of class-level spectral features, we expected feature selection will improve results even further, but none of several selection methods led to clear gains. Further analyses reveal that spectral features computed from consonant regions of the utterance contain more information about emotion than either stressed or unstressed vowel features. We also explore how emotion recognition accuracy depends on utterance length. We show that, while there is no significant dependence for utterance-level prosodic features, accuracy of emotion recognition using class-level spectral features increases with the utterance length.Publication Multiparametric Tissue Characterization of Brain Neoplasms and Their Recurrence Using Pattern Classification of MR Images(2008-08-01) Verma, Raginia; Ou, Yangming; Chawla, Sanjeev; Melhem, Elias R.; Zacharaki, Evangelia I.; Wolf, Ronald; Davatzikos, Christos; Cai, Hongmin; Lee, Seung-KooRationale and Objectives: Treatment of brain neoplasms can greatly benefit from better delineation of bulk neoplasm boundary and the extent and degree of more subtle neoplastic infiltration. MRI is the primary imaging modality for evaluation before and after therapy, typically combining conventional sequences with more advanced techniques like perfusion-weighted imaging and diffusion tensor imaging (DTI). The purpose of this study is to quantify the multi-parametric imaging profile of neoplasms by integrating structural MRI and DTI via statistical image analysis methods, in order to potentially capture complex and subtle tissue characteristics that are not obvious from any individual image or parameter. Materials and Methods: Five structural MR sequences, namely, B0, Diffusion Weighted Images, FLAIR, T1-weighted, and gadolinium-enhanced T1-weighted, and two scalar maps computed from DTI, i.e., fractional anisotropy and apparent diffusion coefficient, are used to create an intensity-based tissue profile. This is incorporated into a non-linear pattern classification technique to create a multi-parametric probabilistic tissue characterization, which is applied to data from 14 patients with newly diagnosed primary high grade neoplasms who have not received any therapy prior to imaging. Results: Preliminary results demonstrate that this multi-parametric tissue characterization helps to better differentiate between neoplasm, edema and healthy tissue, and to identify tissue that is likely progress to neoplasm in the future. This has been validated on expert assessed tissue. Conclusion: This approach has potential applications in treatment, aiding computer-assisted surgery by determining the spatial distributions of healthy and neoplastic tissue, as well as in identifying tissue that is relatively more prone to tumor recurrence.