Le, Anh D

Email Address
Research Projects
Organizational Units
Research Interests

Search Results

Now showing 1 - 4 of 4
  • Publication
    3D Bio-printed Scaffold-free Nerve Constructs with Human Gingiva-derived Mesenchymal Stem Cells Promote Rat Facial Nerve Regeneration
    (2018-12-01) Zhang, Qunzhou; Nguyen, Phuong D; Shi, Shihong; Burrell, Justin C; Cullen, Kacy D; Le, Anh D
    Despite the promising neuro-regenerative capacities of stem cells, there is currently no licensed stem cell-based product in the repair and regeneration of peripheral nerve injuries. Here, we explored the potential use of human gingiva-derived mesenchymal stem cells (GMSCs) as the only cellular component in 3D bio-printed scaffold-free neural constructs that were transplantable to bridge facial nerve defects in rats. We showed that GMSCs have the propensity to aggregate into compact 3D-spheroids that could produce their own matrix. When cultured under either 2D- or 3D-collagen scaffolds, GMSC spheroids were found to be more capable of differentiating into both neuronal and Schwann-like cells than their adherent counterparts. Using a scaffold-free 3D bio-printer system, nerve constructs were printed from GMSC spheroids in the absence of exogenous scaffolds and allowed to mature in a bioreactor. In vivo transplantation of the GMSC-laden nerve constructs promoted regeneration and functional recovery when used to bridge segmental defects in rat facial nerves. Our findings suggest that GMSCs represent an easily accessible source of MSCs for 3D bio-printing of scaffold-free nervous tissue constructs with promising potential application for repair and regeneration of peripheral nerve defects. © 2018 The Author(s).
  • Publication
    Mesenchymal Stromal Cell-Derived Interleukin-6 Promotes Epithelial–Mesenchymal Transition and Acquisition of Epithelial Stem-Like Cell Properties in Ameloblastoma Epithelial Cells
    (2017-09-01) Zhang, Qunzhou; Jiang, jChunmiao; Shanti, Rabie M; Shi, Shihong; Chang, Ting-Han; Carrasco, Lee; Le, Anh D; Alawi, Faizan
    pithelial–mesenchymal transition (EMT), a biological process associated with cancer stem-like or cancer-initiating cell formation, contributes to the invasiveness, metastasis, drug resistance, and recurrence of the malignant tumors; it remains to be determined whether similar processes contribute to the pathogenesis and progression of ameloblastoma (AM), a benign but locally invasive odontogenic neoplasm. Here, we demonstrated that EMT- and stem cell-related genes were expressed in the epithelial islands of the most common histologic variant subtype, the follicular AM. Our results revealed elevated interleukin (IL)-6 signals that were differentially expressed in the stromal compartment of the follicular AM. To explore the stromal effect on tumor pathogenesis, we isolated and characterized both mesenchymal stromal cells (AM-MSCs) and epithelial cells (AM-EpiCs) from follicular AM and demonstrated that, in in vitro culture, AM-MSCs secreted a significantly higher level of IL-6 as compared to the counterpart AM-EpiCs. Furthermore, both in vitro and in vivo studies revealed that exogenous and AM-MSC-derived IL-6 induced the expression of EMT- and stem cell-related genes in AM-EpiCs, whereas such effects were significantly abrogated either by a specific inhibitor of STAT3 or ERK1/2, or by knockdown of Slug gene expression. These findings suggest that AM-MSC-derived IL-6 promotes tumor-stem like cell formation by inducing EMT process in AM-EpiCs through STAT3 and ERK1/2-mediated signaling pathways, implying a role in the etiology and progression of the benign but locally invasive neoplasm. Stem Cells 2017;35:2083–2094. © 2017 AlphaMed Press
  • Publication
    LGR5+ epithelial tumor stem-like cells generate a 3D-organoid model for ameloblastoma
    (2020-05-01) Chang, Ting-Han; Shanti, Rabie M; Liang, Yanfang; Zeng, Jincheng; Shi, Shihong; Alawi, Faizan; Zhang, Qunzhou; Carrasco, Lee; Le, Ahn D
    Ameloblastoma (AM) is a benign but locally aggressive tumor with high recurrences. Currently, underlying pathophysiology remains elusive, and radical surgery remains the most definitive treatment with severe morbidities. We have recently reported that AM harbors a subpopulation of tumor epithelial stem-like cells (AM-EpiSCs). Herein, we explored whether LGR5+ epithelial cells in AM possess stem-like cell properties and their potential contribution to pathogenesis and recurrence of AM. We found that LGR5 and stem cell-related genes were co-expressed in a subpopulation of AM epithelial cells both in vivo and in vitro, which were enriched under 3D-spheroid culture. As compared to LGR5− counterparts, LGR5+ AM epithelial cells showed increased expression of various EMT- and stemness-related genes, and functionally, exhibited increased capacity to form 3D-spheroids and generate human tumor 3D organoids, which recapitulated the histopathologic features of distinct subtypes of solid AM, thus, contributing a useful human tumor platform for targeted therapeutic screening. Treatment with a selective BRAFV600E inhibitor, vemurafenib, unexpectedly enriched the subpopulation of LGR5+ AM-EpiSCs in tumor 3D organoids, which may have explained therapeutic resistances and recurrences. These findings suggest that LGR5+ AM-EpiSCs play a pivotal role in pathogenesis and progression of AM and targeted inhibition of both BRAF and LGR5 potentially serves a novel nonsurgical adjuvant therapeutic approach for this aggressively benign jaw tumor. © 2020, The Author(s).
  • Publication
    Oral Mucositis: An Update on Innate Immunity and New Interventional Targets
    (2020-09-01) Chen, C; Zhang, Q; Yu, W; Chang, B; Le, A D
    Oral mucositis (OM), a common debilitating toxicity associated with chemo- and radiation therapies, is a significant unmet clinical need for head and neck cancer patients. The biological complexities of chemoradiotherapy-induced OM involve interactions among disrupted tissue structures, inflammatory infiltrations, and oral microbiome, whereby several master inflammatory pathways constitute the complicated regulatory networks. Oral mucosal damages triggered by chemoradiotherapy-induced cell apoptosis were further exacerbated by the amplified inflammatory cascades dominantly governed by the innate immune responses. The coexistence of microbiome and innate immune components in oral mucosal barriers indicates that a signaling hub coordinates the interaction between environmental cues and host cells during tissue and immune homeostasis. Dysbiotic shifts in oral microbiota caused by cytotoxic cancer therapies may also contribute to the progression and severity of chemoradiotherapy-induced OM. In this review, we have updated the mechanisms involving innate immunity-governed inflammatory cascades in the pathobiology of chemoradiotherapy-induced OM and the development of new interventional targets for the management of this severe morbidity in head and neck cancer patients. © International & American Associations for Dental Research 2020.