Guralnik, Dan P

Email Address
ORCID
Disciplines
Research Projects
Organizational Units
Position
Introduction
Research Interests

Search Results

Now showing 1 - 4 of 4
  • Publication
    Clustering-Based Robot Navigation and Control
    (2016-05-16) Arslan, Omur; Guralnik, Dan P; Koditschek, Daniel E.
    In robotics, it is essential to model and understand the topologies of configuration spaces in order to design provably correct motion planners. The common practice in motion planning for modelling configuration spaces requires either a global, explicit representation of a configuration space in terms of standard geometric and topological models, or an asymptotically dense collection of sample configurations connected by simple paths. In this short note, we present an overview of our recent results that utilize clustering for closing the gap between these two complementary approaches. Traditionally an unsupervised learning method, clustering offers automated tools to discover hidden intrinsic structures in generally complex-shaped and high-dimensional configuration spaces of robotic systems. We demonstrate some potential applications of such clustering tools to the problem of feedback motion planning and control. In particular, we briefly present our use of hierarchical clustering for provably correct, computationally efficient coordinated multirobot motion design, and we briefly describe how robot-centric Voronoi diagrams can be used for provably correct safe robot navigation in forest-like cluttered environments, and for provably correct collision-free coverage and congestion control of heterogeneous disk-shaped robots. For more information: Kod*lab
  • Publication
    Coordinated Robot Navigation via Hierarchical Clustering
    (2015-07-06) Arslan, Omur; Guralnik, Dan P.; Koditschek, Daniel E.
    We introduce the use of hierarchical clustering for relaxed, deterministic coordination and control of multiple robots. Traditionally an unsupervised learning method, hierarchical clustering offers a formalism for identifying and representing spatially cohesive and segregated robot groups at different resolutions by relating the continuous space of configurations to the combinatorial space of trees. We formalize and exploit this relation, developing computationally effective reactive algorithms for navigating through the combinatorial space in concert with geometric realizations for a particular choice of hierarchical clustering method. These constructions yield computationally effective vector field planners for both hierarchically invariant as well as transitional navigation in the configuration space. We apply these methods to the centralized coordination and control of n perfectly sensed and actuated Euclidean spheres in a d-dimensional ambient space (for arbitrary n and d). Given a desired configuration supporting a desired hierarchy, we construct a hybrid controller which is quadratic in n and algebraic in d and prove that its execution brings all but a measure zero set of initial configurations to the desired goal with the guarantee of no collisions along the way.
  • Publication
    Coordinated Robot Navigation via Hierarchical Clustering
    (2016-03-21) Arslan, Omur; Guralnik, Dan P.; Koditschek, Daniel E.
    We introduce the use of hierarchical clustering for relaxed, deterministic coordination and control of multiple robots. Traditionally an unsupervised learning method, hierarchical clustering offers a formalism for identifying and representing spatially cohesive and segregated robot groups at different resolutions by relating the continuous space of configurations to the combinatorial space of trees. We formalize and exploit this relation, developing computationally effective reactive algorithms for navigating through the combinatorial space in concert with geometric realizations for a particular choice of hierarchical clustering method. These constructions yield computationally effective vector field planners for both hierarchically invariant as well as transitional navigation in the configuration space. We apply these methods to the centralized coordination and control of n perfectly sensed and actuated Euclidean spheres in a d-dimensional ambient space (for arbitrary n and d). Given a desired configuration supporting a desired hierarchy, we construct a hybrid controller which is quadratic in n and algebraic in d and prove that its execution brings all but a measure zero set of initial configurations to the desired goal with the guarantee of no collisions along the way. For more information: Kod*lab
  • Publication
    Discriminative Measures for Comparison of Phylogenetic Trees
    (2017-01-01) Arslan, Omur; Guralnik, Dan P.; Koditschek, Daniel E.
    In this paper we introduce and study three new measures for efficient discriminative comparison of phylogenetic trees. The NNI navigation dissimilarity $d_{nav}$ counts the steps along a “combing” of the Nearest Neighbor Interchange (NNI) graph of binary hierarchies, providing an efficient approximation to the (NP-hard) NNI distance in terms of “edit length”. At the same time, a closed form formula for $d_{nav}$ presents it as a weighted count of pairwise incompatibilities between clusters, lending it the character of an edge dissimilarity measure as well. A relaxation of this formula to a simple count yields another measure on all trees — the crossing dissimilarity $d_{CM}$. Both dissimilarities are symmetric and positive definite (vanish only between identical trees) on binary hierarchies but they fail to satisfy the triangle inequality. Nevertheless, both are bounded below by the widely used Robinson–Foulds metric and bounded above by a closely related true metric, the cluster-cardinality metric $d_{CC}$. We show that each of the three proposed new dissimilarities is computable in time O($n^2$) in the number of leaves $n$, and conclude the paper with a brief numerical exploration of the distribution over tree space of these dissimilarities in comparison with the Robinson–Foulds metric and the more recently introduced matching-split distance. For more information: Kod*Lab