Eisenberg, Richard A.

Email Address
ORCID
Disciplines
Research Projects
Organizational Units
Position
Introduction
Research Interests

Search Results

Now showing 1 - 3 of 3
  • Publication
    Core Ironclad
    (2013-01-01) Osera, Peter-Michael; Eisenberg, Richard A.; DeLozier, Christian; Nagarakatte, Santosh; Martin, Milo; Zdancewic, Stephan A
    Core Ironclad is a core calculus that models the salient features of Ironclad C++, a library-augmented type-safe subset of C++. We give an overview of the language including its definition and key design points. We then prove type safety for the language and use that result to show that the pointer lifetime invariant, a key property of Ironclad C++, holds within the system.
  • Publication
    Closed Type Families With Overlapping Equations (Extended Version)
    (2013-11-15) Eisenberg, Richard A.; Vytiniotis, Dimitrios; Peyton Jones, Simon; Weirich, Stephanie
    Open, type-level functions are a recent innovation in Haskell that move Haskell towards the expressiveness of dependent types, while retaining the look and feel of a practical programming language. This paper shows how to increase expressiveness still further, by adding closed type functions whose equations may overlap, and may have non-linear patterns over an open type universe. Although practically useful and simple to implement, these features go beyond conventional dependent type theory in some respects, and have a subtle metatheory.
  • Publication
    Ironclad C++: A Library-Augmented Type-Safe Subset of C++
    (2013-03-28) DeLozier, Christian; Eisenberg, Richard A.; Nagarakatte, Santosh; Osera, Peter-Michael; Martin, Milo; Zdancewic, Stephan A
    C++ remains a widely used programming language, despite retaining many unsafe features from C. These unsafe features often lead to violations of type and memory safety, which manifest as buffer overflows, use-after-free vulnerabilities, or abstraction violations. Malicious attackers are able to exploit such violations to compromise application and system security. This paper introduces Ironclad C++, an approach to bring the benefits of type and memory safety to C++. Ironclad C++ is, in essence, a library-augmented type-safe subset of C++. All Ironclad C++ programs are valid C++ programs, and thus Ironclad C++ programs can be compiled using standard, off-the-shelf C++ compilers. However, not all valid C++ programs are valid Ironclad C++ programs. To determine whether or not a C++ program is a valid Ironclad C++ program, Ironclad C++ uses a syntactic source code validator that statically prevents the use of unsafe C++ features. For properties that are difficult to check statically Ironclad C++ applies dynamic checking to enforce memory safety using templated smart pointer classes. Drawing from years of research on enforcing memory safety, Ironclad C++ utilizes and improves upon prior techniques to significantly reduce the overhead of enforcing memory safety in C++. To demonstrate the effectiveness of this approach, we translate (with the assistance of a semi-automatic refactoring tool) and test a set of performance benchmarks, multiple bug-detection suites, and the open-source database leveldb. These benchmarks incur a performance overhead of 12% on average as compared to the unsafe original C++ code, which is small compared to prior approaches for providing comprehensive memory safety in C and C++.