Dyckerhoff, Tobias

Email Address
ORCID
Disciplines
Research Projects
Organizational Units
Position
Introduction
Research Interests

Search Results

Now showing 1 - 1 of 1
  • Publication
    Isolated Hypersurface Singularities as Noncommutative Spaces
    (2010-05-17) Dyckerhoff, Tobias
    We study the category of matrix factorizations associated to the germ of an isolated hypersurface singularity. This category is shown to admit a compact generator which is given by the stabilization of the residue field. We deduce a quasi-equivalence between the category of matrix factorizations and the dg derived category of an explicitly computable dg algebra. Building on this result, we employ a variant of Toen's derived Morita theory to identify continuous functors between matrix factorization categories as integral transforms. This enables us to calculate the Hochschild chain and cochain complexes of these categories. Finally, we give interpretations of the results of this thesis in terms of noncommutative geometry based on dg categories.